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Zusammenfassung

Im Zuge der vorliegenden Arbeit wurde eine Apparatur für die Überprüfung einer Grundaus-
sage der Speziellen Relativitätstheorie, der Isotropie der Lichtgeschwindigkeit, entwickelt.
Abweichungen von der Isotropie bedeuten eine Verletzung der Lorentz Invarianz, eine von
allen etablierten Theorien der Grundkräfte angenommenen Symmetrie, und würden auf
Physik jenseits der derzeit gültigen Theorien, der Allgemeinen Relativitätstheorie und des
Standardmodells der Teilchenphysik, hindeuten.
Theoretiker versuchen seit langem alle Naturkräfte in einer einheitlichen Theorie zu vereini-
gen, was bisher trotz vielversprechender Ansätze (String-Theorien, loop quantum gravity, et
cetera) nicht vollständig gelungen ist. Allerdings gibt es Hinweise darauf, dass die Invarianz
unter Lorentz-Transformationen keine exakte Symmetrie darstellen sollte und geringfügige
Abweichungen zu erwarten sind. Dies stellt eine starke Motivation für hochpräzise Tests
der Lorentz-Invarianz dar, wie den in dieser Arbeit präsentierten.

Erstmalig werden in diesem Aufbau monolithische optische Resonatoren aus einer Glaskeramik
mit extrem niedrigem thermischen Ausdehnungskoeffizienten (ULE) verwendet, um die
Isotropie zu testen. Mit Hilfe eines monolitischen Nd:YAG Lasers (λ = 1064nm) werden die
Resonanzfrequenzen von zwei orthogonal orientierten Resonatoren abgefragt und miteinan-
der verglichen. Der niedrige thermische Ausdehnungskoeffizient reduziert den Einfluss von
Temperaturschwankungen auf die Resonanzfrequenzen, die nur vom Abstand der Spiegel
und der Geschwindigkeit des Lichts in den Resonatoren abhängen.
Um eine möglichst hohe Stabilität der Resonanzfrequenzen auf kurzen Zeitskalen zu er-
reichen wurde der gesamte optische Aufbau auf einer aktiven Vibrationsisolierung gelagert,
die mechanische Vibrationen stark dämpft. Diese Technik wird erstmalig in einem Experi-
ment zum Test der Isotropie der Lichtgeschwindigkeit eingesetzt. Desweiteren wurde eine
auf elektromagnetischen Aktuatoren basierende Stabilisierung der Neigung der Trägerplatte
implementiert. Diese ist nötig, da eine Neigung der Resonatoren gegenüber der lokalen
Richtung der Gravitation die Resonanzfrequenzen verschiebt.
Desweiteren wurden Regelsysteme für die Stabilisierung der in den Resonatoren umlaufenden
Leistung und der Temperatur des Aufbaus implementiert. Der gesamte Aufbau kann
mit Hilfe eines luftgelagerten Rotationstisches aktiv rotiert werden. Dies ermöglicht eine
deutlich erhöhte Datenaufnahmerate im Vergleich zu stationären Aufbauten, was zu einer
raschen Reduktion statistischer Fehler führt. Desweiteren sinken die Anforderungen an die
Langzeitstabilität des Systemes. Eine sehr hohe Frequenzstabilität ist auf der Zeitskala einer
halben Rotation gefordert, was bei stationären Systemen hohe Stabilität über 12 Stunden,
hier nur über 45 Sekunden erfordert.

Mit dem beschriebenen Aufbau wurden zwischen März 2008 und April 2009 wiederholt



Messungen durchgeführt, so dass insgesamt ca. 135 000 Rotationen verteilt über diese
Zeit zur Analyse verwendet werden konnten. Diese Daten wurden im Rahmen von zwei
verschiedenen Test-Theorien analysiert, der Robertson-Mansouri-Sexl Theorie (RMS) und
der sogenannten Standard Model Extension (SME).
In der RMS Theorie beschreibt ein Parameter, (δ−β+1/2), eine mögliche Anisotropie. Wir
konnten mit (δ − β + 1/2) ≤ 8 · 10−12 eine obere Grenze für diesen Parameter bestimmen,
die mehr als eine Größenordnung unter den bisher besten Resultaten liegt und eine mögliche
Anisotropie auf 1

2
|∆c(π/2)/c| ≤ 6 · 10−18 einschränkt (1σ).

Im Rahmen der SME konnten mit dem hier vorgestellten Experiment acht Parameter der
Theorie bestimmt werden, die Verletzungen der Lorentz-Invarianz für Photonen beschreiben.
Obere Grenzen für diese Parameter konnten für alle Parameter gegenüber dem Vorgänger-
Experiment und den Werten anderer Gruppen deutlich verbessert werden.Teile der Arbeit
wurden bereits in Optics Communications veröffentlicht:
Ch. Eisele, M. Okhapkin, A. Yu. Nevsky and S. Schiller, Optics Communications 281,
1189 (2008).
Die finalen Resultate der Arbeit wurden in Physical Review Letters publiziert:
Ch. Eisele, A. Yu. Nevsky, and S. Schiller, Physical Review Letters 103, 090401 (2009).



Abstract

An apparatus for a test of a basic postulate of the theory of Special Relativity, the isotropy
of the speed of light, has been developed. Deviations from the isotropy imply a violation
of Lorentz invariance, a symmetry assumed by all established theories of the fundamental
forces. Such a signal may provide a glimpse on physics beyond our current theories of the
fundamental forces, the General Theory of Relativity and the Standard Modell of particle
physics.
Since long theoreticians try to unify General Relativity and the Standard Modell within one
theory, a grand unified theory (GUT). So far they did not succeed, although promising can-
didate theories have been developed, e.g. string theories or loop quantum gravity. However,
there are hints that Lorentz invariance might not be an exact symmetry of nature, but that
deviations are to be expected. This is a strong motivation for tests of Lorentz invariance
with increased sensitivity as the one presented within this thesis.

We employ, for the first time for a test of the isotropy of the speed of light, monolithic op-
tical resonators fabricated from a glass ceramic with ultra low expansion coefficient (ULE).
By means of a monolithic Nd:YAG-laser (λ = 1064 nm) we measure the difference between
the resonance frequencies of two orthogonally oriented resonators. The low thermal expan-
sion coefficient reduces the influence of thermal fluctuations on the resonance frequencies,
which are a function of the mirror spacing and the speed of light inside the resonators only.
The complete optical setup has been put on top of active vibration isolation supports,
which strongly damp mechanical vibrations. This improves the short-time stability of the
resonators’ resonance frequencies. This technique is used for the first time in a Speed of
Light Isotropy Test (SLIT) experiment. Furthermore, a system for the stabilization of the
tilt of the optics breadboard is implemented, based on electromagnetic actuators. This
stabilization is necessary, since a tilt of the resonators with respect to the local direction of
gravitation leads to a shift of the resonance frequencies.
Finally, servo systems have been implemented to stabilize the optical power circulating in
the resonators and the temperature of the setup. The complete experiment can be actively
rotated by means of an high precision air bearing rotation table, which allows for a consid-
erable increase of the rate of data taking as compared to a stationary system. This allows
for a comparatively fast reduction of statistical errors. Another advantage of the active ro-
tation is the relaxation of stability demands for long timescales. A high frequency stability
is needed on a timescale of half a rotation, here ≈ 45 s, while for stationary systems it
would be 12 hours since one has to rely on the rotation of the earth.

With the setup just described we have performed measurements between march 2008 and
may 2009 yielding ≈ 135000 rotations distributed over the entire timespan. This data
was analyzed according to two different test theories, the Robertson-Mansouri-Sexl theory
(RMS) and the Standard Modell extension (SME).



Within the RMS theory a single parameter combination (δ − β + 1/2) describes a possible
anisotropy. For an isotropic speed of light it equals zero. We determined an upper limit of
(δ−β +1/2) ≤ 8 · 10−12 corresponding to a relative anisotropy of the speed of light below
1
2
|∆c(π/2)/c| ≤ 6 · 10−18 (1σ bounds). This value is more than one order of magnitude

smaller than the values published so far.
Within the framework of the SME we could determine 8 parameters describing a possible
violation of the Lorentz invariance by photons. Upper limits for these parameters could be
improved considerably compared to the experimental predecessor of the setup and to the
values determined by other groups.
Parts of this thesis have already been published in Optics Communications:
Ch. Eisele, M. Okhapkin, A. Yu. Nevsky and S. Schiller, Optics Communications 281,
1189 (2008).
The final results have been published in Physical Review Letters:
Ch. Eisele, A. Yu. Nevsky, and S. Schiller, Physical Review Letters 103, 090401 (2009).
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1. Introduction

More than 100 years have passed since the discovery of the theory of Special Relativity
(TSR) during Einsteins annus mirabilis in 1905 [1]. Before its discovery physicists had to
deal with contradictions between their main theories, namely Newtonian mechanics being
invariant under Galilei transformations and the theory of electromagnetism developed by
J.C. Maxwell being invariant under Lorentz transformations. It was expected that electro-
magnetic waves would propagate in a medium, the so called ether, which is at rest in a
certain reference frame and thus defines a preferred system. However, the negative out-
come of one of the most famous experiments in physics, the Michelson-Morley experiment
[2], which was designed to prove the existence of an ether, raised serious doubts about the
assumed fundamental structure of space and time.
Einstein solved these problems when he realized, that the transformation behaviour of New-
tonian Mechanics, the invariance under Galilei transformations, is only an approximation
for low velocities. Instead one has to use Lorentz transformations, under which Maxwell’s
theory of electrodynamics is invariant. Following these ideas he developed the theory of
special relativity (TSR). Later he extended the ideas of the TSR and developed in 1914 the
General Theory of Relativity (GTR) [3].

The theory of Special Relativity is built upon two main assumptions/postulates:

• The Einstein principle of relativity

• The universality of the speed of light

The principle of relativity states that all laws describing the change of physical states should
not depend on which of two coordinate systems is used to describe the change of the phys-
ical state. All coordinate systems moving relatively towards each other with a constant
velocity can be used. This means that every physical law should be invariant under the
same group of transformations.
The universality of the speed of light states, that light propagates in every inertial system
with the same velocity and that this velocity is independent of the state of motion of the
emitting source. These two postulates are fulfilled if physical laws are invariant under the
transformations discovered by Lorentz and Poincaré in 1904 [4, 5]. The symmetry implied
by the theory of Special Relativity is therefore called Lorentz invariance.

Since the time of its development, TSR has withstood all tests and the invariance un-
der Lorentz transformations has become one of the leitmotifs to be accounted for during

1
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Unified theories
string-theory, loop quantum gravity, ...

general relativity

theory of
gravitation

Standard Model

theory of
strong

interactions

theory of
electromagnetic

interactions

theory of
weak

interactions

local Lorentz invariance
local position invariance

weak equivalence princ.

Lorentz invariance
CPT symmetry

??

Figure 1.1.: General Relativity, as well as the Standard Model, assume the validity
of (local) Lorentz invariance. Both theories might be only limits of a
more fundamental theory unifying all fundamental forces, which is not
necessarily Lorentz invariant.

the construction of new physical theories. The transformation behaviour implied by the
TSR is one of the fundamental symmetries incorporated in all our established theories of
the fundamental forces, be it as a local or a global symmetry.
This fundamental importance of Lorentz invariance alone is already a strong motivation
for experimentalists to put it to the test with an ever increasing precision. Another reason
is that theoretical physics is in a situation comparable to the situation at the end of the
19th century. Two different theories describe extremely successfully different parts of the
physical reality (see fig. 1.1).

• The theory of General Relativity describes gravitational interactions and explains ef-
fects on large scales and at high energy densities, while it fails to give a quantum
description of gravity.

• The Standard Model of particle physics on the other hand precisely describes the
electromagnetic, weak and strong interactions down to the quantum level, but it is
not possible to incorporate gravity into its formalism.

2



Therefore theoreticians are searching for a way to unify all the fundamental forces within
one theory, a so called Grand Unified Theory (GUT). Several candidate theories have al-
ready been developed as e.g. string theories1 [6], loop quantum gravity [7], and many more,
but all of them are facing severe difficulties.
However, these developments over the last decades lead to the insight, that the invari-
ance of physical laws under the Lorentz transformation might only be an approximate
symmetry of nature, and that at extremely high energies comparable to the Planck mass
mP l =

√

(~c/G) Lorentz invariance might be broken. In fact in the formalism of string
theories some processes can lead to spontaneous breaking of the Lorentz symmetry although
the general dynamics of the theory stays Lorentz invariant [8].
These deviations are strongly suppressed in our low energy world, but still they may be
detectable in high precision measurements. This hypothesis stimulated new work in the
field of tests of the Theory of Special Relativity and of other fundamental symmetries like
Local Position Invariance or the CPT symmetry.

In order to test the validity of TSR a single experiment is not sufficient. Robertson stated
in 1949 [9], that three experiments are necessary to test the TSR, respectively to replace
Einstein’s second postulate of the universality of the speed of light c by measurements. All
of them are measurements of effects of second order in the speed of light.
The first of these experiments is the so called Ives-Stillwell experiment [10, 11]. This ex-
periment, first performed in 1938, is a measurement of the time dilation predicted by the
TSR. In the original setup measurements of the spectrum of the Hβ lines (λ = 486.1 nm)
have been performed on a beam of fast hydrogen ions (H+

2 , H2+
3 ) to derive the associated

Doppler shift of the frequency of the light emitted by the excited hydrogen atoms. In first
order in the velocity of the beam the result is equal to the classical Doppler shift, predicted
as well by TSR. To be able to measure the second order effect, Ives and Stillwell measured
the shift of the mean of the frequencies of the light emitted in forward and backward di-
rection of the beam, thus averaging out the first order Doppler effect. The Doppler shift
predicted by Special Relativity is given by

ν ′ =
1 − (v/c) cos θ
√

1 − (v/c)2
· ν0, (1.1)

where v is the velocity of the hydrogen beam, θ is the angle between the propagation
directions of the beam and the emitted light, and ν0 is the frequency of the respective
transition in the rest frame of the atom. In case of validity of the TSR, the product of
the frequencies of the light emitted in forward (ν||) and in backward (ν−||) direction should
yield

ν|| · ν−|| = ν2
0 . (1.2)

1The five existing superstring theories in 10 dimensions are proposed to be limits of a single theory
in 11 dimensions, the so called M-theory

3



1. Introduction

Figure 1.2.: Original setup of the experiment performed by Michelson and Morley in
1887. The drawing has been taken from the original publication [2].

Nowadays, Ives-Stillwell type experiments are performed on much faster ion beams in storage
rings using collinear saturation spectroscopy of the atomic transition [12, 13] and frequency
counting in the optical domain.

The second experiment necessary for a test of TSR is a measurement of the constancy
of the speed of light. Such an experiment was performed for the first time by Kennedy
and Thorndike in 1932 [14]. The principle on which the experiment is based is the simple
proposition, that if a homogeneous light beam is split into two beams, which are overlapped
again after traversing paths of different length, then the relative phase, and thus the inter-
ference fringes, will depend on the velocity of the apparatus unless the frequency of the light
depends upon the velocity in the way required by special relativity [14]. In the experiment
the modulation of the velocity of the apparatus, which was expected to shift the resonance
fringes, occurs because of the rotation and the revolution of the earth. Modern versions
of this experiment, e.g. [15], use a laser or a microwave generator frequency-locked to a
highly stable cavity. The resonance frequency of this cavity is compared to the frequency
of a stable atomic clock. The frequency difference should depend on the velocity of the
apparatus towards some reference frame if Special Relativity is violated. As in the original
version, the variation of the velocity occurs due to the rotation and the revolution of the
earth. However, one could use as well high eccentricity orbits of a satellite for this mea-
surement, as has been proposed by Lämmerzahl et al. [16] with the mission OPTIS. This
would increase the detection sensitivity of the apparatus due to the higher velocity variations.

The third experiment necessary to prove the validity of the Theory of Special Relativity
is a measurement of the isotropy of space, respectively of the speed of light. The famous
experiment by Michelson and Morley [2], performed more than 100 years ago, was the
first to test whether a dependence of the two-way speed of light on the propagation direc-
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tion exists. The setup consisted of an interferometer with two orthogonal arms of equal
length (see fig. 1.2). A beam of light from a monochromatic source was split into two
parts using a beam-splitter. The two parts then propagated in orthogonal directions being
retroreflected by several mirrors to increase the optical path length, which is one of the
relevant measures for the sensitivity of the interferometer. Then the beams were combined
again using a second beam-splitter and the interference pattern of the beams was observed
using a telescope. At that time physicists expected the interference pattern to depend on
the orientation of the apparatus due to the motion of the earth relative to the ether. The
null-result of the Michelson-Morley experiment showed that no such effect is present.
This type of experiment has been repeated very often and the precision of the measurement
increased enormously over the past 120 years thanks to technological advances. A first big
step was made possible by the development of the laser delivering coherent light. The first
to use lasers for a Michelson-Morley type experiment were Jaseja et al. [17] in 1965. They
used the cavities of two He-Ne lasers oriented under 90◦ instead of an interferometer and
measured variations of the frequency difference of the two lasers upon rotation. Brillet
and Hall [18] used for the first time a system with a highly stable external resonator. One
He-Ne laser (λ = 3.39 µm) was stabilized to a resonance frequency of this resonator and
was compared to a second He-Ne laser stabilized to a transition in CH4. The first laser was
rotated, while the second served as a stationary reference.

The design of our apparatus follows the tracks of Brillet and Hall and uses optical standing-
wave resonators for the measurements. We use two cavities, as first done by Müller et al.
in 2003 [19] in a stationary system, yielding a hypothetical signal twice as large as in the
case of a single rotating resonator. However, our apparatus is actively rotated, as have
been the setups of Antonini et al. [20] and Herrmann et al. [21], and additionally equipped
with an active vibration isolation system. A detailed description of the experimental setup
will be given in chapter 3.
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2. Theoretical Background

In order to determine to which degree a certain theory is valid, one has to derive quanti-
tative measures for the validity of the theory. In principle one could use the theory under
consideration to calculate how the outcome of an experiment should be and compare it
to the measured result, but this can only give qualitative estimates of the validity of the
theory, and it is almost impossible to compare the outcome of different experiments. Fur-
thermore it is often not so easy to distinguish for a specific experiment from which incorrect
theoretical assumption a possible deviation from the theory under consideration might stem
from. In quantum field theory, e.g., a deviation might either stem from a not exactly valid
Lorentz symmetry or from effects of the quantization procedure.
To be able to distinguish between different influences and to compare the outcomes of
experiments of different types one therefore needs so called test theories. These are gener-
alizations of the theory under test and introduce new parameters, which can be determined
by experiments. In this way different aspects of a deviation from the theory can be modeled
and parameterized. The outcome of experiments of different type can be compared [22].
In general one can distinguish two different kinds of test theories for TSR, namely the class
of kinematical test theories, e.g. the Robertson-Mansouri-Sexl formalism [9, 23] or the
c2-formalism [24, 25], and the class of dynamical test theories, e.g. the Standard Model
Extension [26], the THǫµ-formalism [27, 28], or even more general formalisms [29].

Kinematical test theories generalize the transformations to be used between different
inertial systems. All physical laws are treated in the same way since these test theories
are independent from any particle model and the interactions amongst them. Disad-
vantages are the need for a preferred frame, which might not be unique and in which
furthermore a certain geometry is assumed. Kinematical test theories do depend only
on the relative velocity of the coordinate system used to describe a process versus
the preferred frame. However, a violation of Lorentz invariance might come into play
due to cosmological vector or tensor fields. Such effects cannot be described within
kinematical test theories, which are incomplete in this sense.

Dynamical test theories use generalized Lagrangians or equations of motion to account
for possible violations of Lorentz invariance. The most conservative approach is that
of an effective field theory (EFT) [30]. Within this framework a possible Lorentz
invariance violation can easily be integrated by introducing extra tensors. Both the
Standard Model and General Relativity can be considered to be an effective field
theory. An advantage of dynamical test theories is, that they can be made complete by
construction by adding all interactions violating Lorentz invariance to the Lagrangian
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2. Theoretical Background

of the system. Furthermore there is in principle no need for a preferred system of
reference, although one has to agree on one system of reference in order to make
results of experiments comparable, since the parameters of the Lorentz invariance
violating contributions to the Lagrangian do depend on the choice of the reference
frame.

2.1. Kinematical Framework

In the theory of Special Relativity the transformations between two different inertial systems
S and S’ moving with a constant velocity ~v relative to each other1 are given by

t′ =
1

√

1 − v2/c2
· (t − 1

c2
(~v · ~x))

~x′ =
1

√

1 − v2/c2
·
(

~v(~v · ~x)

v2
− ~vt

)

+ ~x − ~v(~v · ~x)

v2
,

where it is assumed, that the orientations of the axis are the same for S and S’ and the
origins coincide for t = t′ = 0. These transformations lead to the known effects of time
dilation ∆t = γ∆t′ 2, the twins paradox, length contraction l = 1

γ
l′, the Sagnac effect etc.,

of which most have been confirmed in experiments.

For a kinematical test theory of Special Relativity (SRT) one generalizes the above trans-
formations

t′ = t′ (t, ~x) ~x′ = ~x′ (t, ~x) .

Three requirements based on physical reasons restrict the form of the transformations:

1. A force-free motion has to be transformed into a force-free motion (no accelerations).

2. The transformation has to be bijective (a one-to-one mapping).

3. The transformation should depend on the relative motion only.

These requirements lead to the general form

t′ = a(v)t + e(v)~v · ~x

~x′ = d(v)~x + b(v)
~v (~v · ~x)

v2
+ f(v)~vt,

where ~v is the velocity of the origin of S in S’, thus ~x = 0 giving ~x′ = ~vt′. Here, only three
of the unknown functions a(v), b(v), d(v), e(v) and f(v) are of truly physical nature, two of

1~v is the velocity of the origin of S’ in the system S.
2γ = 1/

√

1 − v2/c2
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2.1. Kinematical Framework

them are determined by the synchronization procedure used (e.g. Einstein-synchronization
or synchronization via slow clock transport) and by the relative velocity between the inertial
systems. Since one wants to test Lorentz invariance, namely the non-existence of a preferred
frame of reference, one assumes the existence of a preferred frame of reference Σ with
coordinates {T, X, Y, Z}, which is usually assumed to be the system in which the cosmic
microwave background is isotropic [31], although the choice of this system is not unique.
There might be other cosmologically preferred systems defined by other background fields,
e.g. a stochastical background of gravitational waves [22].However, in this preferred system
the speed of light is assumed to be isotropic, resulting in the known light cone from Special
Relativity

ds2 = dT 2 − dX2 − dY 2 − dZ2 = 0.

Transforming this into the system S one can derive a general formula for the velocity of
light in this system

c(θ, v, e) =
b(v)d(v)(1 − v2/c2)

adv cos θ + bde(1 − v2/c2)cosθ − a
√

b2(1 − v2/c2) + (d2 − b2(1 − v2/c2))cosθ
.

where the speed of light depends on the propagation direction, the relative velocity v and
the chosen synchronization for clocks.

2.1.1. Robertson-Mansouri-Sexl Test Theory

This test theory is a combination of work done by H.P. Robertson in the late 1940’s [9]
and by R. Mansouri and R.U. Sexl in the late 1970’s [23, 32, 33].

Robertson stated, that the outcomes of 3 experiments are sufficient to replace Einstein’s
second postulate, the universality of the speed of light c. These experiments are the
Michelson-Morley-experiment [2] measuring the isotropy of the speed of light, the Kennedy-
Thorndike-experiment [34] measuring the effect of a moving source on the speed of light
(influence of boosts) and the Ives-Stillwell-experiment [10, 11] measuring the time-dilation.
All of them are measuring effects of second order in v/c. One specific feature of Robert-
son’s framework was the application of Einstein-synchronization.

Mansouri and Sexl developed a more elaborate test theory. A driving force for their re-
search was as well the discovery of the cosmic microwave background in 1964 [35], for
which A.A. Penzias and R.W. Wilson received the Nobel Prize in 1978. This showed that
a cosmologically preferred frame might indeed exist.
The starting point of their analysis was the role of convention in different definitions of
clock synchronizations and the simultaneity [23]. They introduced generalized transforma-
tions as outlined in the general section. The assumption was made, that a preferred system
exists and that within this system light propagation is isotropic. Furthermore the speed of
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2. Theoretical Background

light should not depend on the motion of the source and it is assumed, that no preferred
direction should exist in Σ.
Restricting oneself to the case of Einstein-synchronization one can derive the transformation
equations between the preferred frame Σ and a system S moving relatively to Σ to be

t = a(v)T − ~v · ~x
c2

~x = b(v)
(

~v
(

~v · ~X
)

/v2 − vT
)

+ d(v)
(

~X − ~v
(

~v · ~X
)

/v2
)

.

Since usually the speed of the laboratory versus the preferred frame is small compared to
c one may continue by making a Taylor expansion of the introduced coefficients a(v), b(v)
and d(v)

a(v) = 1 + α
v2

c2
+ ..., b(v) = 1 + β

v2

c2
+ ..., d(v) = 1 + δ

v2

c2
+ ...

where only even powers of v can contribute due to the isotropy in the system Σ. In case
of a strict validity of Special Relativity and Lorentz Invariance the parameters α, β and δ
would have the values

α = −1

2
β =

1

2
δ = 0.

Further calculations lead to a formula for the relative shift of the speed of light as compared
to the value in the system Σ

c

c(θ, v)
= 1 + (β − δ − 1

2
)
v2

c2
sin2 θ + (α − β + 1)

v2

c2
. (2.1)

Since the modulation is expected to be very small one can approximate c/(c + ∆c) ≈
1 − ∆c/c and obtains a fractional shift of the speed of light

∆c(θ, v)

c
= −(β − δ − 1

2
)
v2

c2
sin2 θ − (α − β + 1)

v2

c2
. (2.2)

The first term (β − δ − 1/2) describes an anisotropy of the speed of light, which can
be measured by a Michelson-Morley type experiment, while the second term (α − β + 1)
describes a pure boost dependence of c, which can be measured in a Kennedy-Thorndike
experiment. Furthermore it is possible to determine the parameter α, which is modeling
the time dilation, in experiments of the Ives-Stilwell type. The combined results of all three
experiments make it possible to determine the three coefficients α, β and γ.

An overview of the currently most accurate values obtained for the three parameter com-
binations is given in table 2.1.
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2.1. Kinematical Framework

parameter combination value/limit reference
β − δ − 1/2 (0.5 ± 3 ± 0.7) · 10−10 Antonini et al. [36] (2005)
β − δ − 1/2 (−2.1 ± 1.9) · 10−10 Herrmann et al. [21] (2005)
β − δ − 1/2 (−9.4 ± 8.1) · 10−11 Stanwix et al. [37] (2006)
α − β + 1 < 6.6 · 10−5 Hills and Hall [38] (1990)
α − β + 1 (1.9 ± 2.1) · 10−5 Braxmaier et al. [15] (2001)
α − β + 1 (1.6 ± 3.0) · 10−7 Wolf et al. [39] (2004)
|α + 1/2| < 1 · 10−6 Wolf and Petit [41] (1997)
|α + 1/2| < 2.2 · 10−7 Saathoff et al. [12] (2003)
|α + 1/2| < 8.4 · 10−8 Reinhardt et al. [13] (2007)

Table 2.1.: Overview of upper limits on the parameters in the RMS test theory.

Michelson-Morley type experiments

Antonini et al. [36] used a setup with standing-wave sapphire resonators at cryogenic tem-
peratures, probed with a Nd:YAG laser, while Herrmann et al. [21] used standing wave
resonators made from fused silica, also probed with a Nd:YAG laser. In contrast to this,
Stanwix et al. [37] used whispering gallery modes of cylindrical sapphire resonators at
cryogenic temperatures, which were probed using microwave radiation.

Kennedy-Thorndike type experiments

Hils and Hall [38] compared the resonance frequency of an optical cavity with an iodine
standard and searched for variations in the frequency difference originating from the mod-
ulation of ~v due to earth’s rotation. Braxmaier et al. [15] used a comparison between a
cryogenic optical resonator from sapphire and compared it as well to an iodine standard.
Their measurement span was longer allowing a search for modulations due to the orbital
motion of the earth. Wolf et al. [39] used cryogenic sapphire resonators in the microwave
region and compared them to a hydrogen maser.

Ives-Stilwell type experiments

Measurements of the time-dilation factor α with Ives-Stillwell type experiments have been
performed on fast ion beams [40, 12, 13]. Limits have as well been derived via an analysis
of data of the global positioning system (GPS) [41]. Currently the best measurement has
been reported by Reinhardt et al. [13] at the heavy ion storage ring of the MPI for nuclear
physics in Heidelberg using Lithium ions (7Li+).

11



2. Theoretical Background

2.2. Standard Model Extension

Towards the end of the 1990’s theoreticians around V.A. Kostelecký developed a dynam-
ical framework, which is able to model violations of Lorentz invariance in a very general
way. This work was strongly motivated by theoretical discoveries in the 1980’s showing
that mechanisms can occur in string theories and in super-symmetry (SUSY) which give
rise to spontaneous breaking of the Lorentz symmetry [8] or the CP/CPT symmetry [42, 43].

The starting point for their development of a test theory was the Standard Model of particle
physics and the theory of General Relativity. Since it is believed that both theories are the
low-energy limit of a more fundamental theory unifying gravitation and quantum theory pre-
sumably above the Planck scale mP l =

√

~c/G ≈ 1019GeV/c2 [44] such a theory should
include all possible higher-order couplings between the Standard Model and General Rela-
tivity. Still it should maintain coordinate (or observer) independence [45]. In full generality
other geometries as compared to the Minkowski-space time of Special Relativity/Standard
Model and the Riemann-space time of General Relativity should be possible as well, e.g. a
space time of the Riemann-Cartan type.
The general effective field theory incorporating all these assumptions is called the Standard
Model Extension (SME). Its Lagrangian contains in principle an infinite number of terms.
Since the energy scale where the merging of the theories might happen is far beyond reach3,
one can only search for the low-energy remnants, which are strongly suppressed and can
only be identified in high precision experiments. For the design and interpretation of these
experiments it is advantageous to restrict oneself to a subset of the full SME with a fi-
nite number of terms. One subset commonly applied is the so called minimal SME, which
just considers power-counting renormalizable and gauge-invariant terms, conserving the
SU(3) × SU(2) × U(1) symmetry of the Standard Model.
Since for our experiment we are only dealing with electromagnetic interactions we restrict
ourselves to an even smaller subset of the SME called the minimal QED sector of the SME.

2.2.1. Photonic Sector of the Minimal SME

In this subset of the full SME the Lagrangian including the Lorentz violating terms is, for
a freely propagating photon, given by [26]

L = −1

4
FµνF

µν − 1

4
(kF )κλµν F κλF µν +

1

2
(kAF )κ ǫκλµνA

λF µν , (2.3)

where Fµν = ∂µAν − ∂νAµ is the electromagnetic field strength tensor and Aλ is the
electromagnetic potential. The first term −1

4
FµνF

µν reproduces the Maxwell equations of

3The highest energies are currently attainable at the Large Hadron Collider at CERN, designed to
give 14 TeV = 1.4 × 104 GeV for proton collisions and 1150 TeV ≈ 1.2 × 106 GeV for lead ion
collisions.
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2.2. Standard Model Extension

electrodynamics, while the two other terms violate Lorentz invariance.

The coefficient kAF has the dimension of a mass and gives rise to terms in the Lagrangian
which are odd under CPT transformation. It is associated with negative contributions to
the energy density and leads to further problematic implications as has been shown in [46].
Furthermore the magnitude mAF = (kAF )κ(kAF )κ of the vector (kAF )µ is restricted by as-
trophysical observations [47] of expected birefringence effects on the light of distant radio
galaxies to mAF < 1.7×10−41h0 GeV , h0 being the Hubble constant. Other astrophysical
observations [48, 49] support this limit. Therefore this term is neglected in our further
analysis and we set kAF ≡ 0, just keeping

L = −1

4
FµνF

µν − 1

4
(kF )κλµν F κλF µν

as the modified Lagrangian for a freely propagating photon. From the Lagrangian we derive
the equation of motion to be [50]

∂αF α
µ + (kF )µαβγ∂

αF βγ = 0. (2.4)

The coefficients of the tensor kF , which is even under CPT and shows the same symmetry
as the Riemann curvature tensor, are dimensionless. The symmetry of the tensor together
with a normalization condition, the vanishing of the double trace4, restricts the number of
independent components of the tensor to 19.
To get more insight into the physical meaning of the equation above the following linear
combinations of the components are formed:

(κDE)jk = −2(kF )0j0k

(κHB)jk =
1

2
ǫjpqǫkrs(kF )pqrs

(κDB)jk = (kF )0jpqǫkpq

(κHE)jk = −(κDB)kj. (2.5)

Furthermore, in analogy to the procedure in Maxwell’s electrodynamics, new fields ~D and
~H are defined according to

(

~D
~H

)

=

(

1 + κDE κDB

κHE 1 + κHB

)

·
(

~E
~B

)

(2.6)

4The double trace (dtrace) is defined as dtrace(kF ) = (kF )κκλλ using Einsteins summing convention.
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2. Theoretical Background

Then, from equation 2.4 together with equation 2.6 we get the usual form of Maxwell’s
equations in an anisotropic medium

~∇× ~H − ∂0
~D = 0

~∇× ~E + ∂0
~B = 0

~∇ · ~D = 0
~∇ · ~B = 0. (2.7)

Note that the whole derivation has only been dealing with photons alone, therefore regarding
the case of vacuum. The result of the calculation shows however, that the vacuum behaves
like an anisotropic medium. Thus anisotropy of the speed of light and birefringence of
the vacuum might occur. For ease of description of our experiment in this test theory we
introduce the following linear combinations of the matrices κDE , κHB, κDB and κHE

(κ̃e+)jk =
1

2
(κDE + κHB)jk

(κ̃e−)jk =
1

2
(κDE − κHB)jk − 1

3
δjk(κDE)ll

(κ̃o+)jk =
1

2
(κDB + κHE)jk

(κ̃o−)jk =
1

2
(κDB − κHB)jk

κ̃tr =
1

3
(κDE)ll, (2.8)

where the (κ̃e) matrices are even under parity operations while the (κ̃o) matrices are odd
under parity operations. The sign ± specifies the linear combination and tr marks, that the
scalar is a trace. Since κ̃tr is a scalar it is therefor invariant under rotations, the matrix κ̃o+

is asymmetric and contains 3 independent coefficients. The three matrices κ̃e−, κ̃e+ and
κ̃o− are symmetric and have a vanishing trace. Each of these has 5 independent coefficients.
Using these new matrices and the scalar one can rewrite the Lagrangian using the ~E and
~B fields

L =
1

2

[

(1 + κ̃tr)E
2 − (1 − κ̃tr)B

2
]

+
1

2
E · (κ̃e− + κ̃e+) · E

− 1

2
B · (κ̃e+ − κ̃e−) · B + E · (κ̃o+ + κ̃o−) · B.

By comparison with the normal Lagrangian of the electromagnetic field in vacuum

LMax =
1

2
( ~E2 − ~B2)

one can see that the coefficient κ̃tr shifts the effective permettivity ǫ and the effective
permeability µ of the vacuum. Furthermore it can be seen that birefringence of the vacuum
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2.3. Laboratory Test - The Michelson-Morley Type Experiment
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Figure 2.1.: Basic layout of the original Michelson-Morley experiment using a Michel-
son interferometer (left) and the modern version using lasers and res-
onators (right). PD: photodiode

is controlled by the matrices (κ̃e+) and (κ̃o−) [50, 51]. From astrophysical observations
upper limits for the coefficients of these matrices have been derived (< 2 · 10−32) [47, 48],
which are well below the sensitivity expected for our setup. Thus these coefficients will be
considered to be zero in the further analysis.

2.3. Laboratory Test - The Michelson-Morley Type Experiment

To test whether an anisotropy of the speed of light might exist, we use a modern version of
the Michelson-Morley setup with optical resonators representing the interferometer arms.
Figure 2.1 shows the principal layout in comparison to the original work using a Michelson-
interferometer.
In the experiment by Michelson and Morley [2] a beam of monochromatic light was split
by a beam splitter and sent along two orthogonal arms, at whose ends the beams were
retroreflected. Via the beam splitter the two beams were overlapped again, and in the
output of the interferometer one observed interference fringes.These are expected to change
upon rotation in case of an anisotropy of c.
In the modern version the coherent light of lasers is used to probe the resonance frequencies
of optical resonators. Therefore the frequency of each laser output is stabilized to the
resonance frequency of the respective resonator. A part of the light is split from the main
beams and is made to overlap on a photodiode, resulting in a beat. Detection of the power of
this beam via a photodiode yields an amplitude-modulated current with the frequency being
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2. Theoretical Background

the difference of the resonance frequencies of the two resonators. Again, this measurement
is performed as a function of the orientation of the apparatus. The resonance frequency of
a resonator is (for plane mirrors) given by the mirror spacing L and the speed of light c

ν0 = N · c

2L
= N · νFSR. (2.9)

Here N is the so called mode number, νFSR is the free spectral range of the resonator,
which is hypothetically the lowest possible frequency of a standing wave which could be
supported by the resonator5. Now in case of an anisotropy the resonance frequency will
be shifted according to the directional dependence of the speed of light c(θ). Due to the
symmetry of the resonator it is to be expected qualitatively, that the resonance frequency
will be modulated at twice the rotation frequency upon rotation of the setup, hence the
shift can be described via

∆ν

ν0

= B sin 2ωrott + C cos 2ωrott, (2.10)

where ν0 ≈ 2.82 · 1014 Hz for a Nd:YAG-laser operating at λ = 1064 nm.
Due to the rotation of the earth and the orbital motion one might expect an additional
modulation to come into play, so the amplitudes B and C might be modulated according
to

B = B0 + Bs1 sin ω⊕T⊕ + Bc1 cos ω⊕T⊕ + Bs2 sin 2ω⊕T⊕ + Bc2 cos 2ω⊕T⊕

C = C0 + Cs1 sin ω⊕T⊕ + Cc1 cos ω⊕T⊕ + Cs2 sin 2ω⊕T⊕ + Cc2 cos 2ω⊕T⊕, (2.11)

with coefficients Bi, Ci which are themselves modulated at an annular frequency.

2.3.1. Definition of the Reference Frame

As explained above, the Standard Model Extension (SME) does not require any preferred
reference system, but the value of the coefficients describing Lorentz invariance violation
or CPT violation do depend on the chosen coordinate system. Thus, to make experiments
and values of different groups comparable one has to agree on a common reference frame
for the data evaluation.
For the Robertson-Mansouri-Sexl (RMS) frame on the other hand a preferred system has
to be chosen. It is assumed, that the frame in which the cosmic microwave background is
isotropic might be a good candidate.
Kostelecký proposed for the SME test theory a sun centered celestial equatorial frame (SC-
CEF) [50] and this has been generally adopted as reference for the κ̃ matrices. For the

5In reality this is not the case since the mirrors are only reflective in a small wavelength range.
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Figure 2.2.: Definition of the sun centered celestial equatorial frame (SCCEF). The Z-
axis is parallel to the axis of rotation of the earth and points in northern
direction, the X-axis lies in the equatorial plane and points in the direc-
tion of the sun at the time of the vernal equinox. The Y-axis completes
the right-handed coordinate system.

typical timescale of experiments in this field (≈ 1 year of data) a sun centered coordinate
system can be treated as being an inertial system. This coordinate system is as well useful
for evaluating the data in the RMS-framework, since it is moving with a constant velocity
and orientation versus the cosmic microwave background. In the following capital letters
will be used for coordinates and coefficients in the SCCEF, small letters for coordinates in
the laboratory frame.

The axes of the SCCEF (see figure 2.2) are defined in the following way [52, 50]:

• The origin of the system lies in the center of the sun.

• The Z-axis is oriented parallel to the rotation axis of the earth and is therefore normal
to the equatorial plane of the earth. Thus the XY-plane corresponds to the equatorial
plane of the earth shifted to the center of the sun.

• In the course of a tropical year the earth moves within the plane of the ecliptic.
Twice a year the XY-plane defined above coincides with the equatorial plane of the
earth, once in spring and once in autumn, defining the points of vernal and autumnal
equinox, respectively. The X-axis is chosen to point from the position of the earth at
the time of the vernal equinox towards the sun. Since this point is moving relative
to the system of fixed stars one has to agree on an epoch to use as reference. In our
case this is the year 2000.
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Figure 2.3.: Orientation of the axes in the frame of the laboratory at a colatitude χ.
The z-axis points upwards, while the x- and y-axes lie in the plane of the
horizon. The x-axis points southwards, the y-axis eastwards.

• The Y-axis is chosen to complete the right-handed coordinate system.

The coordinate system x, y, z for the laboratory frame is defined such that the x-axis points
in southern direction (see figure 2.3), the y-axis points in eastern direction and the z-axis
points vertically upwards. The x- and y-axis lie both in the plane of horizon. Since the
laboratory frame is no inertial frame, the coefficients determined in the laboratory frame
will show variations due to the orbital motion and the rotation of the earth.

2.3.2. Description in the SME

First we assume the nonexistence of an anisotropy. Then for a given resonator the angular
frequency is ω0 = 2πν0 and ~E0, ~B0, ~D0 and ~H0 are the fields associated with the mode
resonant in the cavity. Now if anisotropy occurs as described by a non-vanishing tensor
kF , then the fields within the resonator will be perturbed and the angular frequency will
be shifted. These perturbed fields may be identified by ~E, ~B, ~D and ~H and δν is the shift
of the resonance frequency. Then, according to [50], the fractional shift in the resonance
frequency can be written as

δν

ν
= −

(
∫

V

d3x( ~E∗
0 · ~D + ~H∗

0 · ~B)

)−1

×
∫

V

d3x( ~E∗
0 · ~D − ~D∗

0 · ~E − ~B∗
0 · ~H + ~H∗

0 · ~B (2.12)

−i~∇
ω0

· ( ~H∗
0 × ~E − ~E∗

0 · ~H)),
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with V being the volume of the resonator. Since we expect only tiny deviations we may
neglect the last term with the derivative. Now we expand equation 2.12 in the coefficients
of kF using equation 2.7 and obtain for the resonator in vacuum with the substitution

~D − ~E ∼= (κDE)lab · ~E0 + (κDB)lab · ~B0

~H − ~B ∼= (κHE))lab · ~E0 + (κHB)lab · ~B0

for the fractional frequency shift the term

δν

ν
= −

∫

V
d3x( ~E∗

0(κDE)lab
~E0 − ~B∗

0(κHB)lab
~B0) + 2ℜ( ~E∗

0(κDB)lab
~B0)

∫

V
d3x( ~E0 · ~D∗

0 + ~B∗
0 · ~H∗

0 )
. (2.13)

For further evaluation we have to specify the electric and magnetic fields of our experimental
setup. In general one can make the following ansatz for the unperturbed fields6 [50]

~E0(~x) = ~e0 cos(ω0N̂ · ~x + φ)e−iω0t

~B0(~x) = iN̂ × ~e0 sin(ω0N̂ · ~x + φ)e−iω0t, (2.14)

where N̂ is a unit vector pointing along the axis of the respective resonator. The constant
~e0 specifies the magnitude and polarization of the field. Equation 2.13 can be simplified
yielding

δν

ν
= − 1

2|~e0|2
[

~e∗0(κDE)lab~e0 − (N̂ × ~e∗0)(κHB)lab(N̂ × ~e0)
]

. (2.15)

It is obvious that the frequency shift is just a function of the orientation of the resonator
and the polarization of the electromagnetic field.
For our experiment we use a monolithic construction of the resonators, which are embedded
in one block under an angle of 90◦, thus the vectors N̂i for our two cavities are given by

N̂1 =





cos θ(t)
sin θ(t)

0



 , N̂2 =





sin θ(t)
− cos θ(t)

0



 , (2.16)

where θ is the angle of the axis of resonator 1 with respect to the x-axis of the laboratory,
which is oriented in southern direction. In contrast to the polarization direction chosen in
[50] our polarization is not along the z-axis, but is lying perpendicular to the z-axis and the
resonators axes7, thus the polarization vectors are given by

~e1 = e1





− sin θ(t)
cos θ(t)

0



 , ê2 = e2





cos θ(t)
sin θ(t)

0



 . (2.17)

6Cavities void of matter are assumed, thus the relative permettivity ǫ and permeability µ are 1
(natural units, c = 1).

7For the assumed circumstances ǫ = 1, µ = 1 and vanishing (κ̃e+), (κ̃o−) this yields the same results
as in [50].
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Substituting these vectors in the relation 2.15 for resonator 1 we obtain

δν1

ν
= −1

4

[

2(κHB)33
lab − (κDE)11

lab − (κDE)22
lab

]

−1

2
(κDE)12

lab sin 2θ(t) − 1

4
((κDE)11

lab − (κDE)22
lab) cos 2θ(t) (2.18)

= A + B sin 2θ(t) + C cos 2θ(t)

and exactly the same term for resonator 2, but with the angle θ replaced by θ−π/2. Thus
the difference of the resonance frequencies of the resonators ν1−ν2 shows a frequency shift

δ(ν1 − ν2)

ν
= 2B(t) sin 2θ(t) + 2C cos 2θ(t), (2.19)

as already expected due to the symmetry of the system.
Since the rotating earth is no inertial system and therefore the determined coefficients κlab

are not constant over time, we have to use an observer Lorentz transformation [50] to
transform the result into the SCCEF, where the coefficients κ̃ are constant. The observer
Lorentz transformation is given by

Λµ
ν =











1 −β1 −β2 −β3

−(R · ~β)1 R11 R12 R13

−(R · ~β)2 R21 R22 R23

−(R · ~β)3 R31 R32 R33











(2.20)

consisting of a Lorentz boost due to the velocity ~β of the laboratory versus the SCCEF

~β = β⊕





sin Ω⊕T
− cos η cos Ω⊕T
− sin η cos Ω⊕T



+ βL





− sin ω⊕T⊕

cos ω⊕T⊕

0



 (2.21)

and an ordinary rotation

R =





cos χ cos ω⊕T⊕ cos χ sin ω⊕T⊕ − sin χ
− sin ω⊕T⊕ cos ω⊕T⊕ 0

sin χ cos ω⊕T⊕ sin χ sin ω⊕T⊕ cos χ



 (2.22)

of the coordinate system. Here β⊕ = v⊕/c ≈ 1·10−4 is the speed of the orbital motion of the
earth around the sun, Ω⊕ is the corresponding angular frequency. βL = r⊕ω⊕ sin χ ≈ 10−6

is the speed of the laboratory within the SCCEF due to the rotation of the earth, ω⊕ is
again the angular frequency of this rotation. χ is the colatitude of the laboratory. The
angle η = 23.4◦ is the angle between the XY celestial plane and the earth’s orbital plane.
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Two timescales have to be used in the description of the motion of the earth within the
SCCEF. The timescale T⊕ used for the description of the rotation of the earth can be
chosen to be zero at any instant when the y-axis of the laboratory system and the Y-axis
of the SCCEF coincide8. The timescale T used for the orbital motion is set to zero at the
time of the vernal equinox in the year 2000, i.e. when the earth crossed the equatorial plane
of the SCCEF (compare figure 2.2) in spring 20009.
With the transformation matrix given above one can now relate the coefficients in the
laboratory frame (κ)lab with the coefficients of the matrices in the SCCEF, yielding

(κDE)jk
lab = T jkJK

0 (κDE)JK − T
(jk)JK
1 (κDB)JK

(κHB)jk
lab = T jkJK

0 (κHB)JK − T
(jk)KJ
1 (κDB)JK

(κDB)jk
lab = T jkJK

0 (κDB)JK + T kjJK
1 (κDE)JK + T jkJK

1 (κHB)JK , (2.23)

where
T jkJK

0 = RjJRkK , T jkJK
1 = RjP ǫKPQβQ. (2.24)

T0 is a rotation, T1 is a leading order boost contribution.

The temporal behavior during active rotation is still given by equation 2.19, the coeffi-
cients B(t), C(t) show now a specific temporal behavior due to the orbital motion and the
rotation of the earth, which is given in the form

B(t) = B0 + B1 sin ω⊕T⊕ + B2 cos ω⊕T⊕

+B3 sin 2ω⊕T⊕ + B4 cos 2ω⊕T⊕

C(t) = C0 + C1 sin ω⊕T⊕ + C2 cos ω⊕T⊕

+C3 sin 2ω⊕T⊕ + C4 cos 2ω⊕T⊕, (2.25)

where the coefficients Bi, Ci are slowly time-varying functions due to the orbital motion.
They contain different combinations of the (κ̃e+), (κ̃e−), (κ̃o+) and (κ̃o−) matrices. Their
exact form as given in [50] can be found in appendix C. The different components of the
(κ̃e−)-matrix are determined by constant offsets of the determined modulation coefficients
Bi, Ci while the three independent components of the (κ̃o+)-matrix are determined by
modulations of these coefficients with a period of one sidereal year.

2.3.3. Description in the RMS-frame

For the RMS framework the SCCEF described above is as well a suitable choice, since
it almost realizes an inertial system with constant velocity versus the cosmic microwave

8This happens once every sidereal day, corresponding to 23h 55’ 56”.
9This was on march 20th 7:36 a.m. UTC according to the US Naval Observatory (USNO),

http://www.usno.navy.mil/USNO/astronomical-applications/data-services/earth-seasons
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2. Theoretical Background

background (CMB). The direction and magnitude of the velocity ~vsolar of the solar sys-
tem versus the CMB can be derived from the anisotropy observed in the radiation of the
CMB, which shows dipole character with a maximum deviation of ≈ 3mK from the mean
temperature of the background. From the differences one can derive the magnitude of the
relative velocity to be vsolar ≈ 370km

s
. The direction is in the celestial equatorial frame

given by the declination Θ = −6◦ and the right ascension Φ = 168◦ [31].

In the RMS frame the speed of light is expected to vary according to equation 2.2. We
have to calculate the shift of the resonance frequency for each resonator. The axis of the
resonators may have the angles θ1(t) and θ2(t) with respect to the velocity towards the
CMB. Since the relative shift of the resonance frequency is identical to the relative shift in
the speed of light, we can write

∆ν1 − ∆ν2

ν0
= −(β − δ − 1

2
)
v2

c2

[

sin2 θ1(t) − sin2 θ2(t)
]

. (2.26)

To derive the time dependence of this expression we may use the identity

sin2 θi(t) = 1 − cos2 θi(t) = 1 − (~v(t) · êi)
2/v2, (2.27)

or alternatively
v2 sin2 θi(t) = |~v × êi|2, (2.28)

êi being a unit vector pointing along the axis of the respective resonator. For the actively
rotating setup this means in the laboratory frame

ê1,lab(t) =





cos ωrott
sin ωrott

0



 , ê2,lab(t) =





sin ωrott
− cos ωrott

0



 . (2.29)

Rotation of these unity vectors into the SCCEF frame and calculation of the velocity of
the laboratory relative to the CMB,

~v = ~vsolar + ~vorbital + ~v⊕

= vsolar





cos Φ cos Θ
sin Φ cos Θ
− sin Θ



+ vorb





sin ΩT
− cos ΩT cos η
− cos ΩT sin η



+ v⊕





− sin ω⊕T⊕

cos ω⊕T⊕

0



 ,

gives for the shift of the difference of the resonance frequencies a sum of terms, which can
be arranged into coefficients comparable to the SME case,

δ(ν1 − ν2)

ν
= 2B(t) sin 2θ(t) + 2C cos 2θ(t),
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γ0
1
4
sin2 χ(3 cos 2Θ − 1)

γ1 −1
2
sin 2Θ sin 2χ cos Φ σ1 −1

2
sin 2Θ sin 2χ sin Φ

γ2 −1
4
cos 2Φ cos2 Θ(cos 2χ + 3) σ2 −1

4
sin 2Φ cos2 Θ(cos 2χ + 3)

γ3 − sin χ sin 2Θ sin Φ σ3 cos Φ sin χ sin 2Θ
γ4 − cos2 Θ cosχ sin 2Φ σ4 cos2 Θ cos χ cos 2Φ

Table 2.2.: Values of the constants γi and σi in the fit function of the RMS model.
Here terms occuring due to the modulation of the velocity because of the
orbital motion and the rotational velocity of the earth have been neglected.
The expression containing terms up to first order in the orbital velocity is
given in appendix B.

where the coefficients 2B(t) and 2C(t) are given by

2B(t) = (1/2 − β + δ)(v2
solar/c

2
0)(γ3 cos ω⊕T⊕ + γ4 cos 2ω⊕T⊕ + σ3 sin ω⊕T⊕

+σ4 sin 2ω⊕T⊕)

2C(t) = (1/2 − β + δ)(v2
solar/c

2
0)(γ0 + γ1 cos ω⊕T⊕ + γ2 cos 2ω⊕T⊕

+σ1 sin ω⊕T⊕ + σ2 sin 2ω⊕T⊕).

(2.30)

Table 2.2 lists the form of the coefficients γi, σi. Terms arising due to the modulation
of the laboratory’s velocity by the orbital (vorb ≈ 30 km/s) and the rotational motion
(v⊕ = ω⊕ · rearth ≈ 0.46 km/s) of the Earth have been neglected and only modulations due
to the variation of the orientation of the cavities have been considered. The expressions for
the coefficients as obtained from the calculation without neglecting velocity modulations
due to the orbital motion can be found in appendix B.
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3. Experimental Setup

3.1. Overview

A schematic drawing of our "Speed of Light Isotropy Test" (SLIT) apparatus is shown in
Fig. 3.1. Figure 3.2 shows a picture of the setup.

One important feature of the apparatus is the use of a monolithic resonator structure,
where two high finesse optical resonators are embedded in a cross geometry in a block
of ultra low expansion coefficient glass (ULE). In former experiments testing the Lorentz
invariance for electromagnetic waves with resonators separate resonators made from sap-
phire [20, 53] were used. These resonators were operated around 3 K to take advantage of
the fact that sapphire has an extremely low coefficient of thermal expansion at cryogenic
temperatures, since quite in general for dielectric crystals the CTE at low temperatures
behaves like CTE ∝ T 3 (see e.g. [54]).
Our monolithic design allows for common mode rejection of certain disturbances, which
reduces the noise level present in our measurements. The use of ULE allows the operation
of the experiment at room temperature since ULE has an extremely small coefficient of
thermal expansion at this temperature. The resonator block is placed inside a vacuum
chamber (p ≈ 10−7 mbar) which is stabilized to a temperature of ≈ 30◦C.
The use of a sophisticated laser lock scheme consisting of a prestabilization scheme and
fine locks in transmission allows the highly precise readout of the resonance frequencies of
the resonators. With a frequency counter the difference between the resonance frequencies
of the resonators is measured as a function of the orientation of the apparatus.
A strong reduction of measurement noise is enabled by the use of active vibration supports,
which suppress mechanical vibrations of the optical setup and thus reduce the frequency
noise of the laser system and the resonators. This results in a smaller line width of the beat
between the two resonators frequencies.
Another highlight of the experimental setup is the use of a high precision air bearing rota-
tion table for the active rotation of the experiment. This table exhibits a very small wobble
of the rotation axis and a high stability of the angular velocity. This reduces systematic
effects occurring due to a tilt of the resonator structure or due to varying centrifugal forces.
As has been shown in chapter 1, active rotation of the experiment is necessary to extract
a value for the coefficient (κ̃e−)ZZ of the SME. Furthermore active rotation has the ad-
vantage, that the timescale on which the system has to be extremely stable is shifted from
half a day to half a period of rotation, which is typically on the order of a minute. In this
way systematic effects occurring with a daily period can be removed to a big extent from
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Figure 3.1.: Cross section of the experimental setup. A: air bearings, B: piezo motors,
C: voice coil actuators, D: tilt sensors, E: air spring system, AVI’s: active
vibration isolation supports
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3.1. Overview
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Figure 3.2.: Picture of the experimental setup.
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3. Experimental Setup

the data during the evaluation process. Additionally the number of data points is enhanced
by a factor of ≈ 900, allowing to decrease the statistical uncertainty by a factor of 30 as
compared to a non-rotating setup (in the same timespan).
Important for the prevention of systematic effects are two systems for the stabilization of
the tilt of the experimental setup. One system uses air springs and stabilizes the tilt of
the rotation table baseplate to minimize the variations of the tilt of the optical system
upon rotation. The second system stabilizes directly the tilt of the optical setup resting on
breadboard I using electromagnetic actuators.
To avoid systematic effects occurring due to air circulation through the optics and due to
strong temperature variations we have set up a tower around the whole setup (diameter
1.75 m, height 2.25 m). The sides of the tower consist of multilayer elements carried by an
octagonal steel structure. The top of the tower is closed by eight triangular elements which
include thermoelectric coolers (TEC’s) to remove heat from the tower, which is produced
by the electronical equipment. Additionally we have constructed a foam padded box around
the optical setup alone.

In the following sections the main components of the experimental setup will be described
in more detail.

3.2. The Optical ULE Resonators

We utilize for the first time a monolithic structure with crossed resonators made from ultra
low expansion coefficient glass (ULE) for a SLIT experiment. These have, due to the design
of the material, which is a of mixture of glass and polycrystalline structures, the advantage
of a very small CTE at temperatures close to room temperature. Indeed the material
exhibits a vanishing CTE at a particular temperature value. Keeping the resonator at this
temperature would mean to decouple the resonator length from temperature changes (for
small temperature fluctuations).
Since the setup can be operated completely around room temperature and doesn’t need
sophisticated cryogenic equipment anymore, it is a lot easier to realize a system which can
be continuously rotated and acquires data at a much higher rate.
As already mentioned we use a monolithic resonator design, in which the two resonators
necessary for our measurements are embedded in a single block of ULE in a crossed geometry
(see fig. 3.3) allowing for a certain amount of common noise rejection, especially for
thermal and vibrational noise. The block has a rectangular shape with a length and width
Lx = Ly = 84 mm and a height of h = 30 mm. Cylindrical holes have been drilled
through the block in a crossed shape. The block serves as spacer for the standing wave
resonators which are made up by highly reflective dielectric mirrors (λcenter = 1064 nm,
ν0 = 282 THz) with a radius of curvature of Rcurv = 0.5 m and a diameter of d = 25.4 mm.
These are optically contacted to the sides of the block, the substrate material is as well

28



3.2. The Optical ULE Resonators

pumping hole

Figure 3.3.: The dual-cavity ULE block with optically contacted mirrors and a hole
for the evacuation of the block (left corner at the front). The dimensions
are 8.4 × 8.4 × 3.0 cm.

ULE. To evacuate the cylindrical through-bores of the resonator block a small hole has been
drilled (see fig. 3.3) from the side of the block, thus allowing operation of the resonators
in vacuum conditions. In the case of an evacuated resonator, the resonance frequency is
solely a function of the mirror distance L, its radii of curvature and the speed of light c
within the resonator. For a TEMlm-mode of the resonator it is given by

νres = N · c

2L
+ (l + m + 1) · ∆ζ

π

c

2L
, (3.1)

where N is the longitudinal mode number and the second term represents the additional
curvature-dependent round trip phase shift for a Gaussian beam as compared to a plane
wave (Gouy phase). The free spectral range νFSR of the cavity is given just by the mirror
spacing

νFSR =
c

2L
≈ 1.8 GHz

and does not depend on the curvature of the mirrors. The spectral width of the res-
onators’ resonances was measured at the very beginning of this work in spring 2005 using
a frequency-doubled Nd:YAG-laser which was locked to an atomic transition in iodine via
doubler free modulation transfer spectroscopy. Using an acousto-optical modulator (AOM)
the laser frequency was scanned and the transmission signal was recorded. At that time
the measurement showed a width of the transmission signal of δνFWHM ≈ 9.5 kHz, where
a small fraction of the width is due to the linewidth of the laser locked to the transition in
iodine. After the completion of the measurement cycle in spring 2009 the measurement was
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Figure 3.4.: Transmission profiles of the resonances belonging to the TEM00 modes
used for the measurements. Resonator 1 (left) shows a linewidth of 9.3
kHz while the linewidth of resonator 2 (right) is 12.8 kHz

repeated. This time the laser was prestabilized to a TEM01 mode of a resonator and the
TEM00 mode was scanned again by shifting the frequency of the laser beam with the help of
an AOM. This new measurement (compare figure 3.4) shows a linewidth of δν ≈ 9.3 kHz
for one resonator and δν ≈ 12.8 kHz for the other, thus indicating a slight degradation of
the mirror coatings for one of the resonators. The most probable explanation for this is
the accretion of material evaporated from the electrodes of the ion getter pump during late
summer 2008, when a failure of the vacuum system caused a periodic switching of the ion
getter pump with high currents for more than a day. After this event the throughput for the
respective resonator became worse as well. However this slight degradation almost didn’t
influence the performance of the system. With the given linewidth values the finesses of
the resonators are F ≈ 190000, and F ≈ 141000, respectively.

3.2.1. Thermal Expansion Coefficient

As already mentioned, ULE was chosen as material for the spacer and the substrates due
to its very small thermal expansion coefficient α = L−1 · (∂L/∂T ) at room temperature
and due to the fact that at a temperature TCTE lying usually close to room temperature,
the coefficient of thermal expansion is equal to zero. This means that any (infinitesimally)
small variation of temperature does not lead to a change in the length of the spacer. For
obvious reasons one would like to operate the resonators at this temperature so as to min-
imize systematic effects stemming from a varying temperature of the resonator block.

To determine the temperature at which the CTE equals zero we used a frequency doubled
Nd:YAG-laser which was stabilized to a particular iodine line. This referenced radiation was
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Figure 3.5.: Left: vacuum chamber used for the measurements of the coefficient of
thermal expansion. Right: the aluminum chamber, in which the vacuum
chamber was placed to control the temperature of the resonators.

coupled into the resonators with the help of an acousto-optical modulator (AOM) work-
ing as a frequency shifter. The AOM-frequency νAOM necessary to reach the resonance
of the cavity is exactly the difference between the resonance frequency of the cavity and
the frequency of the iodine transition. Measuring this AOM frequency as a function of
the ULE-block temperature thus means to measure the resonance frequency of the cavity
minus the frequency of the iodine line, which is a fixed value.

νres(TULE) = νiodine + νAOM(TULE)

Two ULE-blocks were tested. To control their temperature they were placed inside a vac-
uum chamber which was standing inside an aluminum chamber (see fig. 3.5). This chamber
was made up of 8 mm thick aluminum plates, which were contacted to large heat sinks,
which themselves formed a second closed chamber, via thermo-electric coolers (TEC’s).
Each plate could be individually stabilized in temperature. The temperature was measured
with calibrated AD590 temperature sensors.
We performed this measurement for all resonators (4 resonators in 2 blocks). For each
temperature the AOM frequency has been scanned and the transmission through the res-
onators has been recorded as a function of the frequency. Fitting a Lorentzian curve to
the transmission yielded the central frequency of the resonances. The results for the shifts
of these resonance frequencies as a function of temperature (relative to the starting value)
are shown in figure 3.6. All resonators show first an increase in AOM frequency indicating
that the length of the resonator is decreasing. The shift shows a maximum indicating that
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Figure 3.6.: Left side: shift of the resonance frequencies due to variation of the res-
onator temperature. Right side: coefficient of thermal expansion of ULE
close to the zero-crossing as derived from the measurement.

at this temperature the resonator reached a minimal length and reflecting the vanishing of
the coefficient of thermal expansion. A further increase of the temperature of the block
leads to an expansion of the material and to a shift of the resonance frequencies to lower
values.

From this measurement we can derive the coefficient of thermal expansion. The following
relations hold:

∂ν

∂T
=

∂νAOM

∂T
=

∂

∂T

(

n · c
2L(T )

)

= − n · c
2L2(T )

∂L(T )

∂T
= − n · c

2L(T )
· L−1(T )

∂L(T )

∂T
.

Simplification of these expressions yields

∆ν

ν0
= −∆L(T )

L(T )
.

Thus the relative change in laser frequency is a direct measure for the relative change of the
resonator length. Figure 3.6 shows the inferred coefficient of thermal expansion for each
resonator. In the temperature range of the measurement, 4◦C to 14◦C, the CTE varies
between −1 · 10−8 K−1 and +1 · 10−8 K−1.

Unfortunately, the temperature for the zero CTE is not the same for the four resonators,
meaning that the resonators cannot be operated simultaneously at this desired point (at
least the two cavities of one block). Since our observable is the frequency difference be-
tween the resonance frequencies of two different resonators, we may calculate the shift of
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3.2. The Optical ULE Resonators

the beat frequency between the resonators of one block to get more insight into the impact
of this behavior on our measurements.

The differential expansion coefficient for the two cavities of one block is just the differ-
ence of the expansion coefficients of the respective resonators. The difference between the
expansion coefficients is quite constant over the whole temperature range as can be seen in
figure 3.6, thus within this range the differential expansion coefficient is almost constant.
For one block this results in a differential shift of ≈ −320 kHz/K, for the other block it is
≈ −170 kHz/K. This means, that in fact there is no specific temperature with a minimal
differential CTE we can take advantage of. Instead, for our measurement it doesn’t actu-
ally matter at which temperature we operate the resonators 1. We only have to care for a
maximum stability of the block temperature to avoid huge drifts of the beat frequency due
to temperature fluctuations.
Due to the fact of the rather constant differential CTE and problems with our early temper-
ature stabilization scheme at low temperatures we decided to operate the resonators above
room temperature instead, keeping their temperature at about 30◦C.

3.2.2. Thermal Noise Limit

Due to thermal fluctuations in the spacer material of the cavity, in the substrates of the mir-
rors and in the coatings, the effective cavity length, and therefore the resonance frequency
of the cavity, shows a certain amount of noise. This results in a limit for the precision, with
which one can probe the resonance frequency of the cavities.
To estimate the amount of noise to be expected one can utilize the fluctuation-dissipation
theorem [55], which connects the spectrum of random motion in a system with the mechan-
ical losses. Such an analysis has been performed by Numata et al. [56]. To get information
about the losses φL in different materials they performed a ring-down measurement of free
oscillations to determine the quality factor Q(= 1/φL) of the material. For ULE their
measurements yielded a value Q = 6.1 · 104.
For a rough estimate of order the spacer and the mirrors with coatings are treated separately
and the noise contributions are added afterwards assuming uncorrelated noise components.
The contribution for the spacer is estimated to be

GSpacer(f) =
4kBT

2πf

L

3πR2E
φSpacer,

where a cylindrical shape is assumed for the spacer. Although the shape does not exactly
correspond to our case of a rectangular cross section, we may use this formula as an estimate
and replace the cross section πR2 of the cylinder by our cross section A = w×h. This will

1For reasons of frequency stabilization it is still desirable to have only small excursions of the absolute
frequency and thus a small CTE.
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not falsify the final result too much since the contribution of the spacer material is only
about 10-20% [56] for the ULE case. In the formula given G(f) is the one-sided power
spectrum of length fluctuations, kB is the Boltzmann constant, T the temperature, ω the
angular frequency of the fluctuation, L the length of the cavity and E is Young’s modulus.
Assuming a temperature T = 300 K ∼= 30◦C and using the ULE-values from [56] we get
√

GSpacer = 2.7 · 10−18 m/
√

Hz at 1 Hz.
For the mirrors one can derive an estimate for the power spectrum as [56]

Gmirror(f) =
4kBT

2πf

1 − σ2

√
πEw0

φsub,

where σ is Poisson’s ratio, w0 the beam radius on the mirror and φsub is the loss of the
substrate. For a decreasing beam radius the thermal noise is increasing, due to the fact
that the effective surface on which thermal fluctuations might average out is decreasing.
Since the coating of the mirror is introducing losses as well, one has to multiply this formula
with a correction factor:

(

1 +
2√
π

1 − 2σ

1 − σ

φcoat

φsub

d

w0

)

,

where d is the coating thickness and φcoat are its losses. Using the parameters of our res-
onators we get a mirror contribution of

√
Gmirror ≈ 4 ·10−17 m/

√
Hz at 1 Hz. For one res-

onator the overall length fluctuations are thus given by
√

Gtot =
√

2 · Gmirror + 2 · GSpacer ≈
6 · 10−17 m/

√
Hz. Since we are dealing with two resonators when measuring the frequency

difference we have to multiply this value with
√

2. Then we can derive the amount of
frequency noise in the beat, since

√

GL,tot/L =
√

Gν,tot/ν0.

This yields for our resonators a value of
√

Gν,tot ≈ 0.3 Hz/
√

Hz at 1 Hz. This spectral
density of frequency fluctuations drops as f−1/2 with increasing frequency of the fluctua-
tions. From the spectral density we can derive a lower limit for the frequency stability of
the beat frequency as described by the Allan deviation (see appendix A). For a constant
Allan deviation σy the mathematical relation

√

G(f) = σyν/
√

2 ln 2 · f

holds and we can derive a lower limit of σy ≈ 1.3 · 10−15 for the relative Allan deviation of
the beat, corresponding to an absolute Allan deviation of approximately 0.4 Hz for radiation
with a frequency ν = 2.82 · 1014 Hz.
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Figure 3.7.: Dependence of the center frequency of the Nd:YAG laser output on the
laser crystals temperature

3.3. Frequency Stabilization

3.3.1. The Laser Source

To interrogate the resonance frequencies of the resonators a single Nd:YAG-laser is used. It
is the commercially available diode-pumped monolithic non-planar ring oscillator Nd:YAG-
laser [57] "Mephisto" produced by Innolight GmbH (Hannover).
It has a maximum output power of ≈ 100 mW emitted at a center wavelength of λ0 = 1064
nm. For the free-running laser the linewidth of the emitted radiation is in the range of sev-
eral kHz. The center frequency of the emitted radiation can be controlled via a piezoelectric
crystal glued to one facet of the NPRO laser crystal and via its temperature. Via the piezo
the frequency can be tuned by ≈ ±160 MHz by applying voltages in the range of ±100
V, the tuning coefficient is thus ≈ 1.6 MHz/V. The modehop-free tuning range for control
via the temperature is ≈ 10 GHz with a tuning coefficient of ≈ 3.6 GHz/K and a sensitiv-
ity of the modulation input of 1 K/V. Tuning the crystal temperature between 20◦C and
43◦C yields a variation of the lasers frequency of ≈ 35 GHz as has been measured with a
wavemeter (see figure 3.7).

Since we can use only one laser for two cavities we have to split the emitted radiation
into two parts which can be independently locked to resonances of the resonators. It is
obvious, that we can realize only one servo system via the piezo and the crystal tempera-
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ture. To have almost identical servo systems for the two resonators we therefore decided
to use a two-stage stabilization scheme. For this scheme we have to split the output of the
laser into three beams. Two of the beams are used to interrogate the TEM00-modes of the
resonators, while the third beam is used to prestabilize the Nd:YAG-laser on a neighboring
TEM01 mode of one of the resonators. The resonance frequency of this mode shows almost
the same behavior as the ones of the TEM00 modes under variation of the temperature and
under tilt of the resonator block. Thus locking to this mode strongly reduces the amount
of noise which has to be canceled by the so called fine locks.

Figure 3.8 shows the complete optical scheme of the frequency stabilization system. The
output of the Nd:YAG-laser at a frequency νL is split into three beams with shifted frequen-
cies using the acousto-optical modulators AOM 1, AOM 2 and AOM 3. AOM 1 and AOM
2 are driven by frequency synthesizers (Hewlett-Packard E4420B) which allow for a varying
RF-power and frequency, thus making it possible to control the frequency and power of the
respective beams. AOM 1 shifts the frequency by ≈ +130 MHz, AOM 2 by ≈ −112 MHz.
AOM 3 is driven by a fixed frequency RF-driver with a base frequency of ≈ 370 MHz and
a variable power output. It is operated in a double pass configuration, resulting in a total
frequency shift for the laser beam of ≈ +740 MHz. The frequency values for the AOM’s
have been chosen like this to reach the resonance frequencies of two TEM00 modes and a
TEM01 mode of the resonators as shown in figure 3.9. The polarization of the two beams
generated by AOM 1 and AOM 2 lies in the plane of the optical breadboard, while the
polarization of the beam generated by AOM 3 is rotated by 90◦ and is normal to the plane
of the breadboard.
Thus beams number 1 and 3 can be independently coupled into the same resonator via
a polarizing beamsplitter cube (PBS) and can be stabilized to different modes of the res-
onator. The light of these two beams transmitted through the resonator is split again
using a PBS and detected on two photodiodes. To fix the polarization of beam number 2
it is as well coupled into the second resonator via a PBS. Fixing the polarization via this
procedure eliminates possible shifts of the resonance frequencies, which might occur due to
birefringence of the mirrors and imperfections of their surfaces [58, 59].
For beam number 3, which serves for the prestabilization of the laser frequency, an electro-
optical modulator is used for a modulation of the phase of the beam. This is necessary
for the locking scheme applied for the prestabilization. After being frequency shifted by
AOM 3 the beam is coupled into the resonator. Part of the beam is reflected back from
the resonator and hits after reflection by a 50% beam splitter plate the fast photodiode P3
which is used for the derivation of the error signal for the prestabilization. The photodiodes
P1, P2 and P4 behind the resonators detect the transmitted light and serve two purposes.
For the beams 1 and 2 they are used for the frequency stabilization using a transmission
lock scheme, where via an AC-component of the photocurrent an error signal is derived.
Furthermore, the DC component of the photocurrent is used to stabilize the power circu-
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Figure 3.8.: Optical scheme of the experimental setup. By means of AOMs the radi-
ation of a single Nd:YAG-laser is split into 3 different beams, which are
individually frequency stabilized to different modes of the resonators.
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Figure 3.9.: Shift of the optical frequency caused by the AOMs relative to the laser
frequency.

lating within the resonator.

To measure the frequency difference between the two TEM00 modes it is necessary to
produce a beat between the two beams on a fast photodiode, yielding directly νb = ν1−ν2.
This has been done in an early stage of the development of the apparatus. However, as has
just been shown, the frequency of beam 1 is ν1 = νL − νAOM1, and for beam 2 we have
ν2 = νL + νAOM2. The optical beat frequency corresponds therefore to

νb = ν1 − ν2 = (νL + νAOM1) − (νL − νAOM2) = νAOM1 + νAOM2.

Thus instead of measuring the optical beat between beam 1 and 2 we can measure the sum
of the driving frequencies of the corresponding AOM’s, which can be realized very easily
electronically. It has been verified at the beginning of our measurements that both ways
yield the same result with the optical beat having the identical center frequency and an
almost identical linewidth. Therefore for all further measurements we decided to use the
electronic scheme.

3.3.2. Basics of Control Loops

The basic layout of a control loop for active frequency stabilization of a laser to a reference
is shown in 3.10. The basic theory behind this feedback system can be found in [60] or in
books about control theory. The frequency νL of the laser, which is disturbed by frequency
noise with a spectral density Sf,L [Hz/

√
Hz], is the controlled variable. The frequency

noise described by Sf,L can have several sources: vibrations of the laser, temperature fluc-
tuations inside the laser, fluctuations of the current of the pump diodes, et cetera. The
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Figure 3.10.: Block diagram of the control loop applied in the frequency stabilization
of lasers

laser frequency is continuously compared with the resonance frequency νr of the resonator,
which serves as a frequency discriminator2. It converts frequency fluctuations of the laser,
which lead to a deviation δν = νL − νr from the resonance frequency of the resonator,
into voltage fluctuations x = D · (νL − νr). Here the quantity D [V/Hz] is the slope of
the discriminator, which is generally a function of the Fourier frequency of the frequency
fluctuation, x is the so called error signal. Of course the discriminator itself can inherently
inhibit some noise as well, leading to voltage noise with a spectral density SV,D [V/

√
Hz],

which adds to the error signal.
The error signal is fed into a servo system, where it is processed with a complex and

frequency dependent transfer function G [V/V]. The servo itself is naturally not a perfect
device, thus adding another voltage noise component SV,S to the total noise of the control
loop. The output signal of the servo controls an actuator, which converts the given voltage
fluctuations back into fluctuations of the laser frequency with a conversion factor K [Hz/V],
pushing the frequency of the laser back towards the resonance frequency of the resonator.
Elements which can be used as actuator are e.g. piezos glued to the laser crystal, tempera-
ture control of the laser crystal, AOM’s in the beam path and EOM’s inside the laser cavity.

Schawlow-Townes-Limit, Quantum Noise Limit As has been mentioned, the total
noise in the feedback loop consists of contributions from the laser (including the noise from
the actuators, which cannot be separated from the laser noise itself), from the discriminator
and the servo system. The noise Sf,L of the laser frequency can have several origins, but
there exists a lower limit originating from the working principle of the laser. Though the laser

2Of course other frequency references can be used as a discriminator, e.g. atomic transitions.
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works via the process of stimulated emission, spontaneous emission will always happen from
time to time, adding incoherently photons to the laser field and thus randomly perturbing
the phase of the carrier field. This process has been analyzed theoretically by Schawlow
and Townes [61].
The spectral density of the frequency noise Sf,ST associated with the described quantum
noise process shows white behavior, meaning that the spectral density does not depend on
the Fourier frequency of the fluctuation, and is given by

Sf,ST = δνLR ·
√

2hνL

Pout

. (3.2)

Here δνLR is the linewidth of the laser resonator in the absence of radiation and P is the
output power of the laser. The strength of the effect clearly depends on the amount of
spontaneous photons relative to the number of coherent photons, thus the scaling with the
square root of the inverse power.
For free-running lasers this limit is never reached over the complete spectral range, since
especially in the range below 100 kHz technical noise dominates the noise spectral density.
Fluctuations in the pump power of the diode lasers e.g. lead to a contribution proportional
to 1/fα dominating the noise spectral density at low frequencies together with effects from
mechanical vibrations induced from the surrounding and through acoustics.

Active Feedback If the loop is closed, active frequency control is applied and the spectral
noise density can be suppressed over the bandwidth of the control loop, even below the
Schawlow-Townes limit. However all the noise sources apparent in the loop are added to
the frequency noise originating from the laser, resulting in a total closed loop noise spectral
density of frequency fluctuations [60]

Sf,cl =

√

S2
f,L + |K · SV,S|2 + |KG · SV,D|2

|1 + KGD| . (3.3)

Obviously, for very large gain of the servo system it is possible to almost eliminate the effect
of the contributions from Sf,L (laser) and SV,S (servo) and one is left with the effect of the
discriminator noise directly determining the spectral noise of the laser frequency,

Sf,cl min =
SV,D

D
. (3.4)

This means that the laser is perfectly tracking the reference defined by the discriminator
for a sufficiently high gain and bandwidth of the servo system. Still, the discriminator can
define a somewhat noisy reference since technical noise associated with the discrimination
technique and of the amplifiers used for the production of the error signal are included in
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Figure 3.11.: Principal optical layout of the Pound-Drever-Hall frequency stabiliza-
tion system.

the error signal. This can be minimized by making the slope of the discriminator as steep
as possible, which for resonators implies a linewidth ∆νr as narrow as possible, and by
minimizing the electronical noise by using the appropriate components.

3.3.3. Prestabilization, Pound-Drever-Hall-Lock

As already mentioned earlier, we use a two stage scheme for the locking of the lasers
frequency to the resonance frequencies of the resonators. For the prestabilization we use
a scheme, which was developed for microwave applications by R.V. Pound [62] and was
later applied as well in the optical range of the electromagnetic spectrum by R. Drever,
J.L. Hall and others [63]. Therefore this scheme is commonly referred to as Pound-Drever-
Hall scheme (PDH). A sketch of the principal optical layout is given in figure 3.11, for
an theoretical introduction to the technique and some applications one may consult e.g.
[64, 65, 66, 60, 67]. Here only a short description of the technique will be given.

The output of the Nd:YAG laser with an angular frequency ωL is phase-modulated

∆φ(t) = β sin Ωt

by means of an electrooptical modulator (EOM) with a modulation frequency Ω = 2π ·3.04
MHz. After the EOM the beam can be written as a linear superposition of an infinite number
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Figure 3.12.: Error signal of the Pound-Drever-Hall frequency stabilization scheme
when scanning over the resonance. Left side: calculated error signal.
Right side: error signal as measured in our experimental setup for the
prestabilization to a TEM01 mode. The additional peaks arise due to
the TEM10 mode, which is separated by ≈500 kHz.

of beams

Einc(t) = E0e
−i(ωLt+β sin Ωt)

= E0

∞
∑

k=−∞

Jk(β)e−i(ωL+kΩ)t

≈ E0[J0(β)eiωt + J1(β)ei(ω+Ω)t − J1(β)ei(ω−Ω)t], (3.5)

where usually only the terms of first order in Ω contribute significantly to the total power
of the beam. The terms Jn(β) are the n-th order Bessel functions3 of the first kind. Thus
the phase modulation produces sidebands to the carrier frequency at ωL ± Ω with the
amplitude depending on the quantity β known as the modulation index. Now if this beam
impinges on the resonator each frequency component can be treated independently and has
to be multiplied with the corresponding amplitude reflection coefficient F (ω), F (ω ± Ω)
to derive the reflected beam. The amplitude reflection coefficient for a symmetric cavity
without (intracavity) losses can be written as

F (ω) =
r(eiφ − 1)

1 − r2eiφ
(3.6)

where r is the amplitude reflection coefficient of the cavity’s mirrors (≈ 1 in our case) and φ
is the phase shift of the beam acquired during one round trip in the cavity φ = 2πνL/νFSR.

3Jn(β) =
∑

∞

k=0
(−1)k(β/2)n+2k

k!Γ(n+k+1) with Γ(n + k + 1) =
∫

∞

0 xn+k+1e−xdx.

42



3.3. Frequency Stabilization

The reflected beam is then detected on a fast photodetector (bandwidth > modulation
frequency), where beating between the sidebands with power PS and the carrier with power
PC will occur, resulting in a signal which is amplitude modulated at the frequency of the
original phase modulation (and other components) with the amplitude and the phase relative
to the original modulation depending on the detuning from the cavities resonance frequency.
The AC-output of the fast photodetector is fed into the RF-input of a double-balanced
mixer (ZAD-3A) and is mixed with the signal which has been used for the production of
the sidebands. The output of the mixer will show a DC-signal that vanishes exactly for the
laser frequency on resonance, νL = νr, and has opposite polarity for the two sides of the
resonance4.

ǫ = 2
√

PCPSℑ [F (ω)F ∗(ω + Ω) − F ∗(ω)F (ω − Ω)] (3.7)

The form of this resulting "error signal" is shown in 3.12. On the left side a calculation
of the error signal is shown, while the right graph displays the error signal as measured in
our setup. The central feature of the error signal has a steep slope DV ≈2V/10kHz=100
µV/Hz close to the resonance of the resonator. In our case an additional peak arises (see
fig. 3.12) due to the TEM10 mode, which due to imperfections of the mirror substrate is not
degenerate as described by equation 3.1, but separated by ≈ 500 kHz. By alignment it can
be almost completely supressed. Since this lock is only used for prestabilization, potential
shifts of the lock point, which might arise due to a varying alignment or laser power, will not
lead to systematic effects as the finelocks keep the respective laser frequency on resonance.
The output of the mixer is amplified by the servo system with a complex and frequency
dependent gain G (ω). The bandwidth of the fast output of the servo system driving the
piezo actuator is limited to about 30 kHz to avoid the excitation of mechanical resonances
of the piezo. The bandwidth of the slow output controlling the temperature of the laser
crystal has been set to 0.1 Hz. Furthermore the possible bandwidth of the system is limited
by the resonators, since these realize a low pass filter with the cutoff frequency on the order
of the linewidth.

3.3.4. Finelocks in Transmission

For fine locking of the two measurement beams we choose a transmission locking scheme.
As already mentioned earlier, the resonance of the cavities can be described by a Lorentzian
lineshape (see fig. 3.13)

L(ωL) =
(∆ω/2)2

((ω0 − ωL)2 + (∆ω/2)2

=
1

1 + (ω0−ωL)2

(∆ω/2)2

. (3.8)

4Additionally AC components arise which are removed by means of a lowpass filter.
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Figure 3.13.: Working principle of the transmission lock (left). On resonance the fre-
quency modulation leads to intensity modulation at 2Ω, while off reso-
nance the modulation is primarily at Ω. Right: calculated error signal
(intensity modulation amplitude at Ω in the approximation of small
frequency modulation amplitudes) and measured error signal (dashed).
The amplitudes were scaled to yield the same maximum.

In a simplified treatment one could think of the lock working like shown in figure 3.13. A
modulation of the laser frequency ωL = ωL0 + δωL sin Ωt will lead, neglecting effects due
to the long lifetime of the photons in the resonator compared to the period of modulation,
to a modulation of the intensity of the transmitted light according to

I(t) = I0 · L(ωL(t))

=
1

1 + (ω0−ωL0−δωL sinΩt)2

(∆ω/2)2

. (3.9)

If the mean laser frequency ωL0 equals the resonance frequency of the resonator the trans-
mitted intensity will be modulated primarily at twice the modulation frequency, though
higher (even) harmonics of the modulation frequency appear as well. The situation is dif-
ferent when the laser frequency is probing one of the wings of the transmission profile. Then
the transmitted intensity will show a modulation primarily at the modulation frequency itself
since the wings exhibit an almost linear slope for small modulations. Figure 3.13 illustrates
this behavior. On the two wings of the resonance one obtains a modulation of the intensity
at Ω. The phase of the intensity modulation relative to the frequency modulation depends
on which wing is probed and differs by 180◦ for the two cases. Thus, a phase sensitive
detection of the intensity modulation at the modulation frequency can be used to derive
an error signal. This is shown on the right side of figure 3.13, where the magnitude of the
component in phase with the modulation frequency is given as a function of the detuning
of the laser. Close to the resonance the agreement between the calculation (solid) and the
measured signal (dashed) is very good. However, for deviations bigger than ≈ 4 kHz from
the resonance the measured signal drops faster than the calculated one.
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3.3. Frequency Stabilization

A more detailed analysis follows the same route as the discussion of the Pound-Drever-
Hall lock. For the frequency modulation of the laser beam we use a sinusoidal signal.
Thus, our frequency modulation scheme is equivalent to the phase modulation of the PDH
lock, since

E(t) = E0 · ei
∫

t

0
(ωL0+δω cos Ωt′)dt′ (3.10)

= E0 · eiωL0t+β sinΩt. (3.11)

Here β = δω
Ω

is again the modulation index, which in our case is approximately 1.2. Again
one can use the expansion of the electric field already given in section 3.3.3. For our
transmission locking scheme we now have to use the complex transmission coefficient of
the cavity to derive the electric field after the resonator. This transmission coefficient is,
assuming again a symmetric cavity without losses, given by

T (νL) =
(1 − r2)eiπνL/νF SR

1 − r2e2iπνL/νF SR

. (3.12)

The phase factor 2πνL

νF SR

is the round-trip phase shift for a laser beam with frequency νL circu-
lating in the resonator. Using the expansion of the electric field and the given transmission
coefficient, the transmitted field can be derived as

Etrans(t) = E0

∞
∑

k=−∞

Jk(
δω

Ω
)e−i(ωL0+kΩ)t · (1 − r2)ei(ωL0+k·Ω)/2νF SR

1 − r2ei(ωL0+k·Ω)/νF SR

≈ E0 · [J0(
δω

Ω
) · (1 − r2)eiωL0/2νF SR

1 − r2eiωL0/νF SR

+ J1(
δω

Ω
) · (1 − r2)ei(ωL0+Ω)/2νF SR

1 − r2ei(ωL0+Ω)/νF SR

+J−1(
δω

Ω
) · (1 − r2)ei(ωL0−Ω)/2νF SR

1 − r2ei(ωL0−Ω)/νF SR

+ .....]. (3.13)

Here the first three sidebands contribute considerably to the overall power. Their amplitude
is given by the value of the Bessel functions of first kind: J0(1.2) = 0.67, J1(1.2) = 0.50,
J2(1.2) = 0.16 and J3(1.2) = 0.03. A photodiode positioned behind the resonator detects
the power transmitted through the resonator. Thus, again we have to square the calculated
electric field Etrans(t) to derive the current produced by the phodiode. We get constant
terms giving the average power detected by the photodiode and additional terms at the
modulation frequency due to the beating between the sidebands and the carrier. Further-
more, we get terms due to the beating of the sidebands with each other at a frequency of
2Ω and 3Ω.
From the signal at Ω we derive, as in the case of the Pound-Drever-Hall lock, the error
signal used for the stabilization of the laser to the resonance frequency of the cavity. Fig-
ure 3.14 shows the error signal using all terms containing sidebands up to the third order
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Figure 3.14.: Left: Error signal calculated using all contributions up to the third order
sideband. The measured error signal (dashed) matches the calculated
curve well after scaling of the amplitudes. Right: Calculated signals at
higher harmonics of the modulation frequency Ω. The signal at 3Ω has
been multiplied by a factor of 6 to enable a better display.

together with the measured error signal in our setup, where the amplitude has been scaled
to the same maximum. The measured signal almost perfectly fits the calculated shape.

The servo system developed for the finelocks synchronously detects the modulations which
are in phase with the modulation signal yielding the shown error signal. To be able to
compensate for phase shifts within the loop the relative phase between the reference sig-
nal (signal used for frequency modulation) and the intensity modulation can be adjusted
to yield a maximum discriminator slope. To avoid any parasitic influence of the second
harmonic on the locking system a notch filter with small width of the stop band has been
installed within the lockbox to remove this component of the intensity modulation. The
signal at 2Ω has its maximum amplitude directly on resonance and falls off to the sides
of the resonance. Furthermore a lowpass filter removes higher harmonics of the modula-
tion frequency, especially the third harmonic, which vanishes directly on resonance (see fig.
3.14), but could give a oscillating contribution to the error signal when being off resonance,
thus disturbing the frequency lock.

It has already been mentioned, that the resonators act like lowpass filters with a cut-
off frequency in the range of the linewidth, which is in our case about 10 kHz. Thus
we choose modulation frequencies for our finelocks below this limit. To avoid a possible
cross-contamination between the two locking systems we choose two different modulation
frequencies in the audio range. The lock to resonator A uses Ω = 2π · 3.4 kHz, while the
lock to resonator B uses Ω = 2π · 4.08 kHz.
For obvious reasons the bandwidth of the servo system for the finelocks should be smaller
than the modulation frequency itself. In our case the bandwidth is ≈ 500 Hz.
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Figure 3.15.: Left: Allan deviation and Hadamard deviation of the beat frequency
between the resonators for the rotating setup. Results for the stationary
setup are almost identical, except the non-existence of the bump at
approximately half the rotation period (32 s). Right: Drift of the lock
offset over the course of a few days. The drift is on the order of 2.6
mHz per day.

As actuators for the stabilization of the optical frequency and for the frequency modulation
we use AOM 1 and AOM 2. The servo systems control the frequency of the RF-output of
the driving synthesizers via an integrated frequency modulation (FM) input. To the control
voltage of the servo system, which keeps the laser frequency on resonance, we add the
AC-signal leading to the frequency modulation. This signal is fed into the FM input of the
synthesizer.

Figure 3.15 shows on the left the stability of the beat frequency resulting from the de-
scribed frequency stabilization scheme upon rotation of the setup. The Allan deviation is
at a level of 1 Hz at an integration time of 1 s. For longer integration times the instability
first drops, then the effect of beat frequency drifts leads to an increase in the instability.
Using the Hadamard deviation one can remove the effect of a linear drift. This measure of
instability first drops, reaches a bottom of ≈ 0.6 Hz and rises again for integration times
well above the period of rotation. However, the Hadamard deviation shows a bump at
approximately half the period of rotation, indicating a residual modulation at the period
of rotation. This is not the case for the nonrotating system. The minimum value of the
Hadamard deviation is slightly above the thermal noise limit estimated for our resonators.
The right side of figure 3.15 shows the drift of the lock offset leading to a shift of the
lockpoint of the frequency stabilization system. The effect of the drift is on the order of a
few mHz per day and thus negligible.
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Figure 3.16.: Effect of the active feedback on the stability of the laser power trans-
mitted through the resonators. Short term fluctuations are slightly
reduced, while long term drifts are almost completely removed.

3.4. Power Stabilization

To avoid systematic effects occuring due to variations of the laser powers circulating inside
the resonators we have to actively stabilize these powers. Therefore the powers transmitted
through the resonators are detected with different photodetectors (PD1, PD2 and PD4;
see figure 3.8).
The overall power of the beams impinging on the resonators can be controlled via the
RF-power driving the respective AOM’s. As already mentioned earlier, AOM 1 and AOM 2
are driven by a frequency synthesizer, which incorporates modulation inputs for frequency
and amplitude of the produced radio frequency signal. We utilize the amplitude modulation
inputs to stabilize the transmitted powers of beam 1 and beam 2 via a servo system with
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Figure 3.17.: Residual instabilities of the transmitted laser powers upon rotation
(left) and inferred instability of the beat frequency due to the power
fluctuations (right).

a bandwidth of approximately 2 kHz.
Via a variable offset voltage the servo system allows to set the desired DC power level.
AOM 3 is driven by a fixed frequency AOM driver. Within this driver, the RF-signal is
produced by a local oscillator and is amplified by a broadband amplifier. To be able to
control the RF power, a voltage variable attenuator (Minicircuits) has been added between
the two stages and allows the stabilization of the power of beam 3.

Figure 3.16 shows the effect of the active stabilization on the laser powers transmitted
through the resonators. Fluctuations of the laser power are strongly suppressed. Figure
3.17 shows on the left side the relative Allan deviation of the transmitted powers character-
izing the residual instabilities. For the two channels of the finelocks the residual fluctuations
show the behaviour of white noise, averaging out for longer integration times, till at ≈ 10000
s other noise types become dominant and lead to a slight increase in the instability.
The channel of the prestabilization lock is not so stable for longer times. However, this is
no limiting factor for our measurements.

3.5. Rotation Table

As already mentioned earlier, it is in principle possible to utilize the natural rotation of the
earth to determine the value of (β − δ − 1/2) in the Mansouri-Sexl frame and most of the
coefficients in the standard model extension (SME). Restricting oneself to these values, one
can use a stationary setup in the laboratory frame.
However, if one aims at determining also the coefficient κ̃ZZ

e− of the SME, one has to actively
rotate the setup in the laboratory. Furthermore, for measurements with a stationary setup
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Figure 3.18.: Left: Schematic drawing of the high precision air bearing rotation table
with the main components. Right: Picture of the rotation table during
the construction of the setup.

parameter value parameter value

baseplate diameter 152 cm radial runout < 1µm
rotor diameter 99 cm axis wobble < 2 µrad

weight ≈1300 kg contouring error < 0.7 µrad
maximum load 1200 kg pressure axial bearing typ. 1-2 bar

max. mass moment of inertia 192 kgm2 pressure radial bearing 5-6 bar
max. tilting effect 300 Nm max. velocity 5 rpm

planarity of baseplate 1 µm angular resolution 0.01” ∼= 34 nrad

Table 3.1.: Specifications of the high precision air bearing rotation table

one needs a very good stability of the system on the timescale of half a day to a day, which
is not so easy to realize, whilst for an actively rotating setup it is sufficient to have a very
good stability on the timescale of the active rotation.
In the course of our measurements and the development of the setup, two different rotation
tables have been used to actively rotate the setup. For first measurements a mechanical
ball bearing rotation table was taken from the preceding experiment with cryogenic res-
onators [20], first results obtained with this table were reported in [68]. This was replaced
at a later stage by a high precision rotation table with axial and radial air bearings. Some
specifications are given in table 3.1, a drawing of the rotation table is shown in figure 3.18.

The rotation table consists of a baseplate of octagonal shape fabricated from granite and
has a mass of ≈1300 kg. It has a surface flatness of ≤ 1 µm over the entire surface. Inte-
grated within the baseplate is a rotary feedthrough system for electrical connections (power
and signal lines) and for compressed air. The resistance noise of the electrical feedthrough
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Figure 3.19.: XY-plot of the two tilts of breadboard I upon rotation of the system.
In absence of wobble of the axis the points should lie on a circle, as
indicated by the red line. The dashed circles bound the tilts allowed by
the specifications.

is specified to be below 0.001 Ω. Furthermore, an angle encoder system is included to
determine the angular position of the table. The angle encoder (with 90000 lines etched
on a glass plate) works according to an interferential scheme and produces 180 000 signal
periods per round. The output of the angle encoder is a 1Vpp signal varying sinusoidally
upon rotation. Readout of the angle encoder is accomplished by a commercial servo system,
which drives as well the motors for rotation of the table. The servo system interpolates
the reading of the angle encoder output 1024 times, yielding 1024 · 180000 = 1.8432 · 108

increments per round, resulting in an angular resolution of ≈ 34 · 10−9 rad. Additionally
an inductive sensor has been fixed to the ground plate, detecting the transit of a metal
screw fixed to the rotor. The sensor switches from logical low to logical high during the
transit and can be used to define the zero position of the table and to count the number
of performed rotations. The zero position of the rotation table (θ = 0) is such, that the
orientation of one resonator is in north-south direction, while the other resonator is oriented
in east-west direction with an error of few degrees.
On the same axis inside the baseplate sits a radial air bearing (typ. pressure 5.5 bar) with

the rotor being connected to a cross-shaped platform carrying the experimental setup. At
the outer end of the cross sit 4 air bearing pads (typ. pressure 1-2 bar) carrying the weight
of the experiment. On the lower side of the carrying plate a ceramic driving ring with an
outer diameter of ≈ 0.5 m and an inner diameter of ≈ 0.36 m has been fixed, while on the
baseplate of the table 8 piezomotors have been fixed. These contact the ceramic driving
plate and rotate the table by moving the ceramic strip.
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Figure 3.20.: Fluctuations of the angular velocity (top) of the rotation table and the
position error (bottom), measured with the servo system that controls
the rotation.

Characterization

With the components just described the table is specified to have a radial runout below
1 µm and a wobble of the rotation axis below 2 µrad. The wobble of the rotation axis
was measured upon delivery of the table and is with few µrad within a small factor of the
specified value. Figure 3.19 shows for one measurement the modulation of the tilts with
rotation in an xy-plot. Without wobble of the axis the points should lie on a circle as
indicated by the solid red circle. The dashed circles limit the region in which the tilt should
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Figure 3.21.: Absolute Allan Deviation of the angular velocity of the table (in µrad/s)
and of the position error (in µrad).

vary according to the specifications (±2µrad). The measurement noise of the tilt sensors
leads to a scatter of the datapoints of ≈ ±1 µrad. As can be seen the specification is
approximately satisfied. The radial runout has not been checked.
Figure 3.20 shows the typical fluctuations of the angular velocity of the rotation table on the
timescale of several milliseconds, as it has been measured via the servo system that controls
the rotation. The angular velocity was ≈ 70 mrad/s. From this data the overlapping Allan
deviation as given in appendix A has been calculated (see fig. 3.21), characterizing the
instability of the angular velocity. For integration times above 1 s, which corresponds to
the gating time of our frequency measurements, the absolute instability is below 10 µrad/s.
Thus, the relative instability of the angular velocity is below 2 · 10−4.

3.6. Tilt Stabilization

One of the most severe systematic effects associated with Michelson-Morley experiments
comes from variations of the tilt of the optical resonators with respect to the direction of
gravitation. This is due to elastic deformations of the resonator block under the varying
gravitational forces acting on the block.
For actively rotated experiments the axis of rotation therefore has to be aligned in such a
way that it coincides exactly with the direction of gravity. Of course the rotation table as
well as the laboratory environment are not perfect, so that one has to stabilize, or at least
to record, the tilt of the resonators continuously.
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Series 755 tilt sensor

total range ±1◦ ∼= 17.5 mrad
resolution 0.1 µrad
repeatability 1 µrad
linearity 0.1’ within ±10’

0.5’ within ±20’
scale factor @ 20◦C 7.2 mV/1’/1 Vexc

natural frequency 0.77 Hz
damping 45%

signal conditioning unit 781

output voltage range ±8 VDC (single-ended)
±16 VDC (differential)

gain range ×1, ×10
temperature output 0.1◦C/mV (single-ended), -40◦C to +100◦C
integrated lowpass filters τon = 7.5s, f−3dB = 1/(2πτ) = 0.02 Hz

τoff = 0.05s, f−3dB = 1/(2πτ) = 3.2 Hz
filter roll-off -6 dB/octave
scale factors high gain: ≈ 0.1 µrad/mV (single-ended)
(with given sensor) low gain: ≈ 1 µrad/mV (single-ended)

Table 3.2.: Specifications of the electronic bubble level tilt sensors and the signal
conditioning unit by Applied Geomechanics Inc.

To do so we use a two-axes electronic bubble level tiltmeter5 and two single-axis tiltmeters
of the same type with a measurement resolution of approximately 1 µrad. Table 3.2 shows
some of the specifications of the tilt sensors and the signal conditioning unit. Operating
in the high gain mode, they deliver a voltage of 20 mV/µrad for a differential output
configuration. The natural time constant of the tilt sensor is τ = 0.5 s. These signals are
used to realize a servo system via a LabVIEW-program.

3.6.1. Building Movements and Baseplate Stabilization

One main contribution to a varying tilt of the whole setup comes from the variation of
the ground floor tilt. Unfortunately our laboratory is situated on the second floor, where
varying temperatures of the building have already a considerable effect on the tilt of the
building. Figure 3.22 shows the variation of the tilt of the rotation table baseplate due to
the night-day cycle of the building’s tilt. To compensate for this effect we implemented an
active stabilization of the tilt of the rotation table baseplate.
The baseplate is resting on 3 feet6, 2 of which include air spring elements usually used as

5755-series with signal conditioning unit model 781 by Applied Geomechanics
6Two further feet are additionally put for security purposes to avoid overturning of the baseplate
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Figure 3.22.: Drift of the tilt of the rotation table’s baseplate over the course of
several days.

bearings for industrial machinery to damp oscillations and vibrations (see right side of figure
3.23). Each of these air springs is able to carry a maximum load of 1.3 t. The pressure will
vary between 1 and 6 bar for loads between 200-1300 kg. The air springs act like a passive
isolation system with a resonance frequency which depends on the given load and is in our
case ≈ 4 − 5 Hz. Oscillations occuring at this frequency are already damped by the active
vibration isolation. A damping element integrated in the air spring limits the resonance
gain of the air springs to ≈ 3.5. Regulating the amount of air inside the elements allows
for changing their height by ≈ ±6 mm according to the specifications. This corresponds
to a tilt variation of several mrad.

To measure the tilt of the baseplate we use the two single-axis tilt sensors. This allows to
measure the tilts of the baseplate with respect to two pivots which are not orthogonal to
each other, as is the case for a 3-feet system with two adjustable feets. Thus a change of tilt
on one axis should not influence the reading on the other axis. However, this independence
is only given if the pivots are fixed. In our case the changing load distribution leads to some
influence on the tilt of the second axis as well due to the finite stiffness of the air springs.
To be able to control the height of the air springs we use a system of 2-way and 3-way
solenoid valves. Figure 3.23 shows a sketch of the stabilization system for one channel.
The pressurized air supplied by the university (p > 6 bar) is connected via a tee (not shown)
to the inlet of a 3-way valve which can be controlled with TTL-signals via a small controller
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Figure 3.23.: Left: Scheme of the stabilization system for the tilt of the rotation table
baseplate, right: a picture of the air spring used for the stabilization.

box. Logical high lets the air from the university supply float through the valve, while
logical low will let the air of the air spring stream out into the laboratory. Since one wants
to be able to hold a certain position as well, a 2-way valve has been placed between the
3-way valve and the airspring. Closing the valve by applying a logical low signal holds the
position and no air is flowing at all. Opening the valve regulates the height of the actuator
according to the setting of the 3-way valve.
To regulate the flux of air a choke has been placed at the inlet of the air spring. This can
be adjusted manually to realize different time constants for the servo system. The specified
range of the choke is 0-600 l/min at a pressure difference of 6 bar.

An undesirable effect uncovered after the implementation of this system is a modulation of
the tilt reading of the two single-axis tilt sensors when the setup on top of the baseplate
is rotated. Initially, this effect was as large as 100 µrad peak to peak. By changing the
load distribution on the setup the effect could be reduced by a factor of 5 approximately.
Still, the sensors on the optics breadboard show a residual modulation upon rotation of
about 5 µradpp in best case (well aligned rotation axis). This residual modulation can be
compensated by an additional regulation system.

The modulation of the baseplate tilt upon rotation measured by the sensors (≈ 20 µradpp)
precludes the use of a simple PI-servo control. Therefore we used a different digital al-
gorithm. The tilt sensor values are acquired at a rate of 1 Hz with a USB-DAQ-board
(NI-6009) and the lowpass filter of the signal conditioning unit is switched on. The aver-
age over the last n readings is calculated, where n is the number of readings during one
period of rotation. Thus the effect of the modulation averages out. Now if the deviation
of the average from a set value is too large, the solenoid valves are switched accordingly
until the average lies close enough to the set point. The minimum deviation which can
be used as switching point is predefined by the rotation period (time used for averaging)
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Figure 3.24.: Residual modulations of the baseplate tilt after the implementation of
active control (rotating system).

and the setting of the choke controlling the air flux to/out of the air springs. Setting the
switching point too close to the setpoint will result in oscillations of the system. A good
setting for a rotation period of 90 s and the given setting of the choke is a deviation of
±7 µrad from the setpoint. The setpoint is determined such that the modulation of the
tilt of the experimental setup is minimized. Figure 3.24 shows the temporal behaviour of
the baseplate tilt during one of our measurement runs with a rotation period of 90 s. The
mean baseplate tilts are kept within a range of ≈ ±7 µrad from the setpoint.

3.6.2. Stabilization of the Breadboard Tilt

The stabilization of the baseplate already strongly diminishes the slowly varying tilts of the
setup in the nonrotating case. However, it does not keep the axis of rotation perfectly in
the direction of local gravity. Deviations from this occur due to the imperfect stabilization
of the baseplate and due to wobble of the rotation axis. This effect is on the order of
several µrad and would produce a systematic effect on the beat frequency measurement
upon rotation. Thus the tilt of the breadboard carrying the experiment has to be stabilized
further.

For this purpose we use two voice coil actuators fixed at the sides of the optics bread-
board (see fig. 3.1) and take advantage of the fact, that the optics breadboard is not
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Figure 3.25.: magnitude of the transfer function of the tilt stabilization system

rigidly connected to the rotor of the rotation table, but is standing on two active vibration
isolation supports (AVI), which are flexible and can be slightly tilted without greatly dimin-
ishing the vibration isolation. The voice coil actuators consist of a permanent magnet core
with strong neodym magnets and copper coils.
The tilt of the breadboard is monitored with the two-axis tiltmeter fixed below the bread-
board in a central position, so as to minimize effects of the centrifugal acceleration on the
reading of the tilt sensors. To avoid damage of the voice coil actuators due to overheating
the current through the coils is limited to below 5 A defining the maximum compensation
range of the stabilization. The coils are driven by a power amplifier, which can be controlled
via analog signals from the output of a DAQ-board. Analog signals between -5 and +5
V lead to a current through the coils of approximately ±5 A and tilt the breadboard by
≈ ±170 µrad in the x-axis and by ≈ ±280 µrad in the y-axis. The difference is primarily
due to the different stiffness of the AVI-system in the two directions.
Using the described components an active digital feedback system has been realized with
the algorithm programmed in LabVIEW. For first measurements a simple PI-algorithm has
been used, but the maximum possible gain and minimum possible update rate were limited
by resonances of the combined system AVI - tilt sensors - voice coil actuators. To gain fur-
ther information about the combined system the transfer function of the system has been
determined by applying a modulation with varying frequency to the input of the power
amplifier driving the actuators and monitoring the output of the tilt sensor. This has been
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Figure 3.26.: Residual instabilities of the tilt of the experimental setup under active
control. Left: baseplate tilt. Right: residual breadboard tilts during
rotation with a period of 90 s.

done for the case of active vibration isolation and for the case of passive vibration isolation
(AVI switched off). The result of the measurement is shown in figure 3.25. For both cases
one finds resonances of the combined system with the (main) resonance frequency being
shifted from ≈ 4 − 5 Hz (AVI off) to ≈ 700 mHz (AVI on). The resonance at 4-5 Hz
corresponds to the resonance of the springs inside the AVI, which are carrying the weight
of the setup, while the resonance appearing at ≈700 mHz is given by the tilt sensor and
the AVI (in active mode) together. The maximum gain and the update rate of the servo
system are limited by this resonance.
However the update rate can be shifted to values beyond the resonance using a so called
lead-lag-algorithm (see e.g. [69] or other books on feedback systems). The optimal pa-
rameters for this algorithm have been estimated using the Control Design and Simulation
package of LabVIEW.

Figure 3.26 shows the residual instabilities of the tilt of the breadboard and the base-
plate under active control calculated from a dataset with a length of approximately 1 day.
At short integration times (few seconds) the instability is given by the measurement noise
of the tilt sensors.
The baseplate tilt shows an increased instability at roughly half the period of rotation,
corresponding to the modulations of the tilt reading mentioned in 3.6.1. This modulation
averages out for integration times on the timescale of the rotation leading to the dip at
100-200 s. For larger integration times the slowly varying tilt of the building leads to an
increase in the instability of the baseplate tilt.
The tilt of the breadboard carrying the optical setup averages down over the complete range
of integration times and shows no distinct features. On the timescale of half a rotation
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Figure 3.27.: Left: The transfer function for a one stage passive isolation system for
different values of the damping constant γ. Right: Transmission of
vibrations through the AVI-system as function of the frequency.

the instability is on the order of 0.1 − 0.2 µrad. As will be shown in section 4.1 this is not
purely statistical noise, but contains almost constant modulations of the tilt upon rotation
(see fig. 4.4), which could not be further suppressed on this timescale by the stabilization
system.

3.7. Active Vibration Isolation

Vibrational noise at low frequencies is one of the main contributions leading to an increase
in the linewidth of a laser system and in the resonance width of a resonator. Therefore
special caution has to be taken to properly isolate the setup against vibrational noise. The
noise can have two different origins:

1. technical noise due to moving parts of the setup, e.g. fans in the control electronics
etc. (high frequency range)

2. seismic noise and movements of the building and the laboratory ground (low frequency
range)7.

The latter are primarily limiting the short time stability [71]. In experiments aiming at the
realization of ultra-narrow linewidth lasers one may therefore use long pendulas or spring

7See e.g. [70] for further discussion
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Figure 3.28.: Left: Schematic of an active vibration isolation support and its main
components. Right: commercial AVI system

systems with low resonance frequencies ω0 and some damping γ for this purpose, serving
as a passive isolation unit with a transfer function [72]

T (ω) =

√

√

√

√

1 + (2γ ω
ω0

)2

(1 − ω2

ω2

0

)2 + (2γ ω
ω0

)2
. (3.14)

Figure 3.27 shows the transfer function for different values of the damping. Below the
resonance frequency a passive system is not isolating at all, directly on resonance one has a
resonance enhancement depending on the damping γ and only for frequencies above

√
2 ·ω0

the system starts to isolate. One main problem of passive systems is the fact, that it is very
hard to bring ω0 to low values, since the resonance frequency depends on the dimensions
of the pendulum/spring8.

Active vibration isolation systems (AVI’s) have many advantages compared to the pas-
sive system described above. The dimensions of an active system can be very compact
compared to a passive isolation, which is desirable especially in our case since the whole
system has to be rotated. Furthermore an active system can as well partly suppress vibra-
tions which are produced by the experiment itself.
A simplified scheme of such a system is shown in Figure 3.28. A sensor element (piezoelec-
tric crystal) registers the acceleration of an inertial test mass relative to the surface which
should be isolated against vibrations. This surface is supported by a system of springs,
which already realize a passive isolation system. The registered accelerations are processed
by an electronical feedback system, which drives several actuators (piezo-electric). These
initiate a movement of the upper plate relative to the ground plate corresponding to an
acceleration which is phase-shifted by 180◦ with respect to the original disturbance, thus
they compensate the overall acceleration of the upper plate.
The lowest resonance frequency appearing in the system in closed loop operation depends
on the gain of the feedback loop [70], setting a limit to the possible isolation band of the

8To obtain ω0 = 1 rad/s one would need a pendulum of 10 m length.
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Figure 3.29.: Sensitivity of the beat frequency measurement to accelerations in the
vertical direction.

system. Another limiting factor are passive resonances of the system and couplings between
the different degrees of freedom (vertical/horizontal/rotational).
For this work the commercial system AVI-350M by HWL/TableStable (see right side of fig-
ure 3.28) has been used. This system suppresses vibrations in the frequency range of 2-100
Hz actively by more than 35 dB, above it works like a passive isolation system. The mass
which can be put on top of the two supports is limited to ≈ 350 kg. With the two elements
all six degrees of freedom (translation and rotation) can be isolated against vibrations. An-
other advantage of the system is the possibility to deliberately introduce accelerations via
the included modulation input. Doing so one may determine the sensitivity of the system
to accelerations. Applying signals in the range 2-100 Hz will result in a movement of the
corresponding axis. The velocity amplitude is approximately constant over the frequency
range, ≈ 15 µm/s for a signal of 1 Vpp at the input, the acceleration amplitude will behave
like a ≈ 15µm·s−1

ωmod

. However for frequencies above 30 Hz no pure excitation will occur, but
a mixed excitation of all the axes will result.
Figure 3.29 shows the results of such a measurement for vertical accelerations. The sensi-
tivity of the beat frequency measurement is approximately 55 mHz/µg, corresponding to a
fractional sensitivity (relative to the laser frequency ν0) of 2 · 10−11 s2m−1. This value is
only about a factor of 4 larger than the value reported by Nazarova et al. [73] for a single
resonator with a special vibration insensitive mount.
Figure 3.30 shows the influence of the low frequency vibrations on the frequency noise of
the beat frequency. Shown on the left is the spectrum of vibrations in the vertical direction
as measured with an accelerometer from PCB Piezotronics Inc. (model 393A03) with a
sensitivity of 1000 mV/g in a frequency range of 0.2-6000 Hz (-3dB). The use of the AVI
system suppresses the vibrations to a level which is not detectable anymore with the given
accelerometer and FFT analyzer. On the right is shown the effect of the vibrations on the
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Figure 3.30.: Left side: Fourier spectrum of the vertical accelerations present on the
breadboard carrying the optics with and without the use of the AVI
system. Right side: Suppression of frequency noise due to vibrations
via the AVI.

frequency noise of the beat frequency. To measure this, a frequency to voltage converter
(FVC) with a discriminator slope of 10 V/100 kHz has been used to produce an electrical
signal proportional to the instantaneous beat frequency. Additional peaks arise compared
to the spectrum of the vertical accelerations, since the beat frequency is as well disturbed
by accelerations in the horizontal directions. Clearly the use of the AVI strongly reduces
the frequency noise by suppressing vibrations.
The effect becomes even more evident if one measures the linewidth of the beat between
the two resonator frequencies. Figure 3.31 shows the positive influence of the AVI on the
linewidth of the beat. With the AVI the line has a width of few Hertz, while without AVI
the width of the line as determined via a Lorentz fit is increased to more than 30 Hz.

3.8. Temperature Stabilization

As already mentioned it is important to obtain a high dimensional stability of the res-
onator length, which makes a stable resonator temperature a necessity. Problematic for
this purpose is the location of our laboratory. Although the laboratory has no windows, the
temperature rises considerably on sunny days since starting from noon the sun is directly
heating the outer (thin) wall of the laboratory. Therefore several means had to be incorpo-
rated into the setup to achieve a sufficient stability.
First of all it is important to achieve a high passive stability of the resonator temperature,
requiring the damping of fluctuations of the ambient temperature. As a first isolation stage
serves the vacuum chamber, where the mechanical contact between the resonator mounting
and the vacuum chamber itself was minimized to obtain a large time constant for temper-
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Figure 3.31.: Linewidth (Full width at half maximum) of the beat frequency as mea-
sured with a FFT analyzer. The width increases considerably if the
active vibration isolation is switched off.

ature changes of the resonator due to external temperature changes. As already described,
the vacuum chamber itself stands inside a wooden box. This box is foam padded from both
sides to minimize the heat exchange with the surrounding.
The temperature of the laboratory can be controlled via two chillers distributed in the
laboratory. One chiller is cooled by the cooling water supply of the university. However,
during hot summer days this cooler is not sufficient to keep a stable temperature within
the laboratory, since the cooling power is too low.Thus we added an electrical chiller with
a cooling power of 2.6 kW.
The two chillers are operated in different modes. For the water cooled chiller we decided to
switch off the control unit and to operate it with the full cooling power at all times. This
mode was chosen since the air of this cooler is directly flowing on top of our tower around
the experiment, thus cooling the upper part of our TEC elements, which are removing heat
from the tower. Doing so we ensure good heat removal from the tower and avoid effects
due to switching processes of the cooler observed in the beginning of our measurements.
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Figure 3.32.: Variation of the laboratory temperature during an 8 day long measure-
ment run on easter 2009

For regulation of the temperature in the laboratory thus primarily the electrical chiller is
used, which is set to the desired room temperature. To enable an active control of the
temperature inside the tower, the top has been equipped with elements containing thermo-
electric coolers. At the beginning of our measurements this system worked well. However,
in the course of our measurements additional electronics has been placed inside the tower
and the cooling power of the elements was not sufficient anymore to keep the temperature
very stable.

Figure 3.32 shows the temperature in the laboratory during a measurement session of
few days over easter 2009. Using the two chillers it is possible to keep the temperature of
the laboratory within a range of ±1◦C.
Figure 3.33 shows as an overview the variation of the temperature at several positions within
the experimental setup, as well as the measured beat frequency (top left). Shown at the
top right is the temperature inside and close to the top of the tower. It is measured with a
sensor rotating with the experimental setup. Compared to the laboratory temperature the
inside variations are reduced only by a factor of 2 to about ±0.5 ◦C due to the fact, that
the tower had to be kept slightly opened at the top to enable better heat removal.
The second row of figure 3.33 shows the temperature at a height of 1 m as measured with
two stationary sensors on opposite sides of the tower. The fluctuations on the timescale of
the rotation result from the electronics equipment, which rotates together with the optical
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setup. This equipment emits heat, usually via fans within the housing, thus producing a
non-isotropic flux of warm air, which leads to a periodic modulation of the measured tem-
perature for the static temperature sensors.
However, the optical setup is shielded versus the temperature influence of the outside via
a foam padded shielding. The temperature close to the optics is sensed with two sensors
on different sides of breadboard I (see fig. 3.1). These should detect a possible effect
of a gradient of the tower temperature on the optics temperature, since upon rotation a
sinusoidal modulation of the temperature may be expected. This is not detected.
Additionally, the temperature within the wooden box surrounding the vacuum chamber with
the resonators is sensed with two sensors. The corresponding temperature variations are
shown in the bottom row of figure 3.33.
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Figure 3.33.: Overview of the temperature variations at different positions over the
course of an eight day long measurement on easter 2009. Top left: beat
frequency.
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4. Sources of Systematic Effects

Several different influences can disturb the resonance frequency of the resonators and may
lead to systematic effects on the beat frequency νb = ν1 − ν2. Some of these effects
have already been mentioned partly in chapter 3. Here a detailed overview of the different
sources and magnitudes of possible systematic errors will be given. Among the different
sources are:

• variations of the resonator tilt relative to the direction of the gravitational force,

• variations in the speed of rotation leading to varying centrifugal forces,

• variations of the power of the laser light circulating inside the resonators,

• frequency drifts induced by temperature variations of the resonators and the optical
setup.

Throughout all of our measurements the dominant systematic effect remaining on the beat
frequency measurement was observed at the frequency of the table rotation ωrot (magnitude
≈ 0.5 Hz), while the effects at 2ωrot were extremely small. These would compromise
primarily the determined value for (κ̃e−)ZZ , which is only influenced by constant modulations
at 2ωrot and has no sidereal or annual component. All other coefficients are not influenced
by a constant offset in the determined amplitudes, since they are determined by the sidereal
and annual modulations of the amplitudes B(t) and C(t).

4.1. Tilt of the Rotation Axis

As has already been mentioned, it is important to keep the tilt of the optical setup relative to
the direction of local gravitation as stable as possible to avoid systematic effects associated
with varying gravitational forces acting on the system. A variation of these forces will result
in two main effects:

• The structure of the resonator will deform according to the changing forces on the
structure. This will lead to a varying spacing between the mirrors forming the res-
onator, thus shifting the resonance frequency. Furthermore the mirrors will be slightly
tilted versus each other leading to an additional shift of the resonance frequency.

• Optical elements used for coupling the beam into the resonator will bend slightly and
thus a small misalignment of the beam will result. This leads as well to a small shift

69



4. Sources of Systematic Effects

P

a

FG

F cosG a

FG sina

Figure 4.1.: Forces acting on a resonator, which is tilted by an angle α with respect
to gravity.

of the resonance frequency. The size of this effect can hardly be estimated, but the
magnitude of the combined effect can be measured, yielding a sensitivity coefficient.

For the deformation of the resonator a rough estimate of the effect can be found using
simple mechanics. The only force acting on the resonator block in steady state condi-
tions is the gravitational force of its own mass. This can be split in two components, a
component normal to the plane in which the resonators lie, and a component pointing
along the axis of the resonator. Figure 4.1 illustrates this. For simplicity we consider
one resonator and simplify the geometry to a solid rod. For the situation where no forces
act on this solid rod we assume it to have the height h (30 mm) and the length L (84 mm).

The component of the gravitational force acting normal to the resonator’s axis, Fn =
FG · cos α, compresses the resonator block, thus reduces its height according to Hooke’s
law

∆h

h
=

FG · cos α

E · S , (4.1)

where α is the tilt angle, E is Young’s modulus (67.6 · 109 Nm−2 for ULE) and S is the
surface on which the force Fn acts. Due to the finite Poisson ratio η of the material (0.17
for ULE1), the length L of the rod will be increased by an amount

∆L

L
= η · ∆h

h
= η · ρgh cos α

E
, (4.2)

where FG = ρghS has been substituted for the gravitational force of the resonator block
with ρ being the density of the rod (2.21 · 103 kg/m3 for ULE). This effect is on the order

1as given in the datasheet of the manufacturer
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of 5 · 10−9 for our resonator block as compared to a situation without gravitation. Thus,
the sensitivity to vertical accelerations is on the order of 5·10−10 s2/m for a single resonator.

The force Fp = FG sin α acting in the direction of the resonator axis leads to an ef-
fect, which depends as well on the position of the point P where the resonator is fixed
to the mount. In the case that the resonator is fixed exactly at its center this force will
lead to no change of the resonator’s length, since the effects on the two sides just cancel.
However, if the resonator is not fixed in its center (see figure 4.1), one side of the block
will be compressed in the axial direction, while the other side extends by a different amount
in the same direction, thus effectively resulting in a change of the length of the resonator.
Assuming the point P to be at a distance d from the center of the resonator, the change of
the resonator length can be written as the sum of the compressed (∆L1) and the extended
side (∆L2)

∆L = ∆L1 + ∆L2

= −(L/2 + d) · ρg(L/2 + d)S sin α

ES
+ (L/2 − d) · ρg(L/2 − d)S sin α

ES

=
ρg sin α

E
· [(L/2 − d)2 − (L/2 + d)2]. (4.3)

Using the parameter γ = d
L/2

, γ ∈ [−1, 1], the formula can be simplified yielding for the
relative variation of the total resonator length

∆L

L
= −ρgLγ sin α

E
. (4.4)

The combined effect of the force acting normal and parallel to the resonator axis is thus
given by

∆L

L
=

γρLg

E
· sin α +

ηρhg

E
· cos α. (4.5)

Now we can derive an estimate for the sensitivity of the resonance frequency to small tilt
variations. If we assume that the resonator has a small offset tilt α, and that we change
the tilt by a small angle δα only, then we may expand eq. 4.5 yielding

∆L

L
=

ρLg

E
· [−γδα − ηh

L
· (αδα +

δα2

2
)].

The relative change of the resonator length is equal to the relative shift of the resonance
frequency. Rearranging the last equation to describe linear and quadratic effects in δα gives

∆ν

ν0

= −ρLg

E
· [γ − ηhα

L
]δα +

ηρgh

2E
δα2

= −A · δα − B · δα2, (4.6)
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Figure 4.2.: Influence of the tilt of the rotation axis on the orientation of the resonator
with respect to gravity.

thus ν0 · A and ν0 · B are the linear and quadratic sensitivities of the resonance frequency
of a resonator with center frequency ν0 to small tilt variations. As an example we consider
a symmetry factor γ = 0.02 and a negligible offset tilt (α < 50 mrad), obtaining

Aν0 ≈ 150 mHz/µrad

Bν0 ≈ 0.2 µHz/µrad2.

Thus, for small changes in the tilt α the quadratic term Bν0 is usually negligible and only
linear frequency shifts are expected. Only for the case of almost perfectly symmetric fixing
of the resonator the quadratic term will contribute considerably to the total effect, but
remain very small in absolute terms.
The sensitivity of the beat frequency to tilts of the experimental setup has been determined
experimentally. Therefore, breadboard I carrying the optics has been tilted using the voice
coil actuators. The tilt has been varied in the direction of the axis of one resonator, while
the tilt for the orthogonal direction was kept constant. Thus, the shift of the beat fre-
quency is determined primarily by the shift of the resonance frequency of one resonator.
The resulting sensitivities of the beat frequency were on the order of 140 mHz/µrad for
the y-axis and 30 mHz/µrad for the x-axis. Thus, they are on the order of the estimate for
the coefficient Aν0 and imply a symmetry factor of 0.018, respectively 0.004. However, a
determination of the sensitivities in this way can be falsified by linear drifts. More precise
is a determination of the sensitivities via the modulation of the tilt upon rotation.

Upon rotation of the experimental setup the tilt will usually be modulated. If the rota-
tion axis is perfectly aligned parallel to the direction of gravity, then the overall tilt α of
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4.1. Tilt of the Rotation Axis

the resonator versus the horizontal is equal to the tilt αr of the resonator versus the plane
of rotation and no modulation will occur. However, if the baseplate of the rotation table,
and thus the axis of rotation, is tilted by an angle αb (compare fig. 4.2), then the overall
tilt of the resonator versus the horizontal is given by

α(t) = αr + αb · sin ωrott. (4.7)

Therefore, the modulation of the beat frequency upon rotation of the setup due to a tilted
rotation axis will be given by

∆ν(t)

ν0
= A · αb sin ωrott + B · (αb sin ωrott)

2

= A · αb sin ωrott + B · α2
b(

1

2
− cos 2ωrott). (4.8)

As has been shown the sensitivity coefficient B, describing a systematic effect at twice the
rotation frequency, is extremely small and leads to negligible contributions, if we can ensure
sufficiently small tilt modulations on the µrad scale via active control.

The influence of a varying tilt as described above on the beat frequency between the
two resonators can be measured easily, and the sensitivity coefficients can be derived exper-
imentally. Thus, upon evaluation of the raw data the influence of residual tilt variations as
measured with the tilt sensors can then be subtracted from the frequency data using this
sensitivity.

The determination of the sensitivity coefficient is performed before every measurement
run almost automatically. Upon start of the measurement the baseplate of the rotation ta-
ble has to be tilted by a sufficient amount (≈ 50 µrad) to allow for a detectable modulation
of the frequency. Since the frequency shifts linear with a change of the tilt (neglecting B),
one can use the determined sensitivity to calculate the effect of small residual tilt variations
during the measurement. The baseplate of the rotation table is therefore tilted manually
using the air springs of the stabilization system described in chapter 3.6.1. Then the main
programs controlling the rotation table and reading the beat frequency and the tilt of the
optical breadboard are started. The data of the first five rotations is stored in a file and
is used to calculate the sensitivity coefficients. Figure 4.3 shows an example of the data
obtained by this procedure.
In a first step the amplitudes of the beat frequency modulation and the tilt modulations
are extracted by fitting the function

f(t) = f0 + f1 · t + f2 sin ωt + f3 cos ωt + f4 sin 2ωt + f5 cos 2ωt (4.9)

to the respective time series’ yielding four amplitudes for every observable, two for ωrot

modulations and two for 2ωrot modulations. Furthermore a linear drift term is included in
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Figure 4.3.: Modulation of the beat frequency resulting from modulated tilts in x and
y direction.

the fit to account for thermal drifts of the beat frequency.
The beat frequency modulations ∆ν are connected to the modulations of the tilt ∆αx,

∆αy via a system of linear equations, which can be arranged according to









∆νsin ωt

∆νcos ωt

∆νsin 2ωt

∆νcos 2ωt









=









∆αx,sinωt ∆αy,sinωt 0 0
∆αx,cos ωt ∆αy,cos ωt 0 0

0 0 ∆αx,sin 2ωt ∆αy,sin 2ωt

0 0 ∆αx,cos 2ωt ∆αy,cos 2ωt









·









Ax,ω

Ay,ω

Ax,2ω

Ay,2ω









. (4.10)

This system of equations has to be solved for the unknown sensitivity coefficients Ax,ω,
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Figure 4.4.: Residual modulations of the tilt of breadboard I carrying the optical sys-
tem for x-axis tilt (left, ∆αx) and y-axis tilt (right, ∆αy). The maximum
amplitude is about 0.2 µrad.

Ay,ω, Ax,2ω and Ay,2ω. Generally, the sensitivity coefficients determined for the modula-
tions at 2ω exhibit large error bars since the amplitudes of the modulation are very small.
Therefore only the coefficients at ω are used for the decorrelation of possible tilt influences.

The values usually obtained for the sensitivity of the beat frequency to tilt modulations
are about Ax,ω ≈ 20 Hz/mrad and Ay,ω ≈ 120 Hz/mrad, but from run to run (i.e. every
3-5 days) variations occur on a scale of ≈ ±15%. Since we determine the tilt coefficients
only once at the beginning of a measurement run, and not repeatedly during the whole run,
we take this typical variation as a systematic error in the tilt sensitivities. The effect of this
systematic error on the beat frequency depends on the residual amount of tilt modulations
during the measurement run, which are generally well below 1 µrad. Figure 4.4 shows the
residual tilt modulation amplitudes during one measurement run. A moving average over
10 points has been used to smooth the data. On average the residual amplitudes at the
different Fourier components are below 0.2 µrad, thus in worst case a systematic error of
≈ ±(0.018 mHz/µrad · 0.2 µrad) = ±3.6 mHz will occur, which is ≈ ±1.3 · 10−17 relative
to the laser frequency. However, for different datasets the systematic error varies and one
may assume partial cancellation of the effect.

4.2. Centrifugal Forces

Similar to the case of a varying tilt a varying angular velocity of the rotation can lead to
systematic effects if the modulations are occuring at the period of rotation. This is due
to the associated centrifugal forces acting on the resonator structure and on the optical
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Figure 4.5.: Schematic of the resonator block fixed at a distance d from the axis of
rotation.

elements of the system. The length of the resonator will be modulated according to the
radial acceleration present, thus the resonance frequency will be modulated, too. Bending
of the optical elements may cause a variation of the beam alignment, which can as well
cause a shift of the resonance frequency.
Furthermore the reading of the tilt sensor used for the stabilization of the tilt of the optical
setup can be affected by the varying radial accelerations present. This effect is however
minimized in the current setup by the position of the tilt sensor, which is almost perfectly
sitting on the axis of rotation.

For the resonator block a rough estimate for the size of the effect can be derived as a
function of the angular velocity of the rotation. For simplicity we consider the case of a
rectangular block without through bores and just consider one dimension as depicted in
figure 4.5 and already done when discussing tilt effects. We assume the block of length L
to be fixed in a single point P on the rotation table with the axis of the resonator being
aligned in radial direction. The point P is located at a distance R from the axis of rotation.
Effectively no force is acting on the block in this point, which is not necessarily located
at the center of the resonator structure, but may be apart from it by the length L/2 − d.
Thus the inner end of the block is at a distance a = R − d, the outer end at a distance
b = R + L − d from the axis of rotation. Let ρ be the density of the material (2.21 · 103

kg/m3 for ULE) and E Young’s modulus (67.7 × 109Nm−2), then for an angular velocity
ω the deformation due to the centrifugal forces is for a layer of thickness dr at a position
r given by

d

(

∆L

L

)

=
ρω2

E
rdr (4.11)

Integration of the formula over the extension of the whole block yields the relative change
of the resonator block. Two cases have to be distinguished:
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4.2. Centrifugal Forces

• The center of the resonator block is shifted by more than L/2 from the axis of rotation
(R > d).

• The center is shifted by less than L/2 from the axis of rotation (R < d).

For the first case the integration has to be split into two parts. The inner part of the
resonator (closer to the axis of rotation) is compressed due to the centrifugal forces and
the fixation in the point P , while the outer part of the resonator is elongated. The two
parts of the integral are given by

∆Lin

Lin
= −

∫ R

R−d

ρω2

E
rdr

= −ρω2

2E
· [2Rd − d2], (4.12)

∆Lout

Lout

= +

∫ R+L−d

R

ρω2

E
rdr

=
ρω2

2E
· [2R(L − d) + (L − d)2]. (4.13)

The shift of the resonance frequency of the resonator is therefore for a fixed angular velocity
ω given by

∆ν = −ν0
∆Lout + ∆Lin

L
= −ν0 ·

ρω2

2E
· [L2 + 3d2 − 4Rd − 4Rd + 2RL − 3Ld].

For the second case we may assume for simplicity that the point P is lying directly on the
axis of rotation and that the center of the block is shifted by a distance D from the axis of
rotation. Then both parts of the resonator will be elongated due to the centrifugal forces.
The two contributions of the elongated parts are given by

∆L1

L1
= +

∫ L−D

0

ρω2

E
rdr

=
ρω2

2E
· (L − D)2,

∆L2

L2

= +

∫ L+D

0

ρω2

E
rdr

=
ρω2

2E
· (L + D)2. (4.14)

Thus the total change of the resonator length is given by

∆L

L
=

ρω2

2E
· (L − D)3 + (L + D)3

L

=
ρω2

E
· [3D2 + 2L2]. (4.15)
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Figure 4.6.: Fourier transform of frequency data from a dataset with modulated rota-
tion speed. A linear drift has been subtracted. At the rotation frequency
a residual systematic effect is on the order of 0.55 Hz, while the system-
atic effect due to the modulation of ω is on the order of 0.2 Hz.

For a typical rotation period of 90 s and our resonators this effect is on the order of
2.5 · 10−12, while a calculation for the first case would yield slightly smaller values.
The effect of a varying angular velocity on the beat frequency between the two resonators
has been determined experimentally by modulating the rotational speed sinusoidally. Figure
4.6 shows the effect of a modulation on the frequency noise of the beat. The set mean
angular velocity of ω = 2π/90s has been modulated by ±10% of its value. The modulation
period for this measurement was chosen to be 31 s to be able to separate the velocity mod-
ulation effect from other systematic influences (tilt etc.). The two models described above
yield for a single resonator a value between ±50 Hz and ±70 Hz for this strong modula-
tion. However, the similar positioning of the two resonators leads to a strong suppression
of these centrifugal effects when measuring the beat frequency. The rather strong applied
modulation led to a variation of the beat frequency on the order of 0.2 Hz, corresponding
to a fractional variation of 7 · 10−16.

Figure 4.7 shows the relative Allan deviation of the rotational velocity as derived from
a dataset acquired via the servo controller of the rotation table. The relative instability is
on a level of 1.5 · 10−5 at an integration time of 24 s. Thus, with the derived sensitivity
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Figure 4.7.: Relative instability (relative Allan deviation) of the angular velocity at
a set period of 90 s. The raw data was acquired directly from the servo
system.

of ≈ 0.2 Hz/10% we can estimate the frequency instability due to the instability of the
rotation rate to be ≈ 3 ·10−4 Hz for τ = 24 s. This corresponds to a fractional instability of
1.1 · 10−18 on the timescale of interest. Thus, at the current state of the setup we consider
effects stemming from a varying rotation rate to be completely negligible.

4.3. Power Fluctuations

A varying power of the laser light circulating inside the resonator can lead to shifts of the
resonance frequency ν0 of the resonator due to heating effects of the mirror coatings and
the substrate. A measurement of the corresponding sensitivity of the beat frequency to
fluctuations in the power of each resonator has been performed by varying the circulating
power via a modulation of the RF power of the AOM’s used as frequency shifters for the
finelocks. The power transmitted through the resonators as well as the beat frequency were
recorded. Figure 4.8 shows such a measurement.
At the very beginning of our measurements in 2008 this sensitivity coefficient was on the
order of 30 Hz/µW for both resonators. However, as was already reported in chapter 3, a
failure of the vacuum system occured late in summer 2008. After this failure the sensitivity
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Figure 4.8.: Determination of the sensitivity of the beat frequency to power changes
by stepwise changes of the transmitted laser power. PD = photodiode

to power fluctuations had increased for one resonator. From the applied modulations (see
figure 4.8) one can derive a sensitivity of (+54 ± 5) Hz/V for resonator 2, respectively
(−170 ± 10) Hz/V for resonator 1 (beam 1) to power fluctuations as measured with our
photodiodes. The transmitted power through the resonators is approximately 5 µW result-
ing in photodiode signals of 3 V, thus the power sensitivity is on the order of 30 Hz/µW,
respectively 100 Hz/µ W.
The power sensitivity of the beat frequency to modulations of the transmitted power of the
prestabilization beam is hard to measure, since a decrease in the power leads to a smaller
slope of the error signal, which increases the residual amount of frequency noise and can
cause the laser frequency to be unlocked. However, a rough estimate can be derived by
small power variations, yielding a sensitivity of ≈ (−150 ± 50) Hz/V.
As has been described in chapter 3.4, the power is stabilized using the amplitude modula-
tion input of the RF-synthesizers driving the AOM’s, respectively the fixed frequency driver
for the prestabilization beam. Figure 3.17 showed the residual instability of the transmitted
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Figure 4.9.: Instability of the beat frequency inferred from the power fluctuations of
figure 3.17.

laser powers. Figure 4.9 shows the inferred beat instability occuring due to these power
fluctuations for this dataset. At an integration time of 1 s the power fluctuations cause
an instability of the beat frequency of ≈ 0.14 Hz. On the timescale of half a rotation the
instability averages down to a level of ≈ 0.02 Hz, corresponding to a relative instability of
7 · 10−17.

The systematic effect of power fluctuations can be derived as has been done for the tilt
modulations by analyzing the amplitudes of the sine and cosine modulations at an angular
frequency of 2ωrot. Figure 4.10 shows exemplarily for one dataset the power modulation
amplitudes as obtained using the standard fit function.The determined amplitudes for beam
1 and beam 2 reach values of up to several times 10 µV. The derived effect on the beat
frequency would thus be on the order of several mHz, or relative to the frequency ν0 a few
parts in 1017. However, as can be seen from figure 4.10, the effect averages out already
about the extent of a single dataset since the modulations have no preferred signature. The
residual effect depends on the specific coefficient to be determined.

The coefficient (κ̃e−)ZZ is determined by an offset in the determined amplitude 2Cν0,
the error is thus given by the average amplitudes of the modulation. For the shown (typi-
cal) dataset this is on a level of 1 µV, corresponding to an effect on the average frequency
modulation amplitude of ≈ 0.2 mHz, in relative numbers 6 · 10−19. Thus it is negligible.
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Figure 4.10.: Amplitudes of the power modulation for all beams. Displayed are the
sin 2ω and the cos 2ω amplitudes. The data was slightly smoothed to
remove fluctuations on the order of the fit errors.

For the coefficients determined via the sidereal day variation of the beat frequency the effect
can be determined via the effect on the Fourier-amplitudes. This is for the given dataset
on the order of 4 µV, corresponding to 0.7 mHz or 2.4 · 10−18 in relative numbers.
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4.4. Frequency Drifts

A possible source of systematic errors on the determined coefficients is the effect of long
term drifts of the beat frequency. Clearly a purely linear drift will not influence in any way
the determined amplitudes for the modulation, since it can be easily removed from the data
for every single rotation. This is usually done in the analysis. However, this is not the
situation one faces in the experiment.
Usually one faces a daily modulation of the beat frequency due to variations in the ambient
temperature with a period which roughly corresponds to a solar day. The average value
of the beat frequency stays almost the same from day to day, and a typical peak to peak
variation is 20 kHz over the course of a day (see top left of figure 4.11).
To model which effect the nonlinearity of the drift will have on the data, we prepare a
test dataset comparable to real measurement data, where a modulation of the beat with a
period of one solar day, respectively one sidereal day, and an amplitude of 10 kHz is added.
Thus we first produce a data list with 1 s spacing between adjacent datapoints. Then this
list is split into intervals of 90 datapoints, corresponding to a full rotation of the table with
usual settings. To each of these data intervals we fit the function

ν(t) = ν0 +at+2Bν0 · sin
4πt

90 s
+2Cν0 · cos

4πt

90 s
+Dν0 · sin

2πt

90 s
+Eν0 · cos

2πt

90 s
, (4.16)

yielding the amplitudes which would appear as a shift of the determined amplitudes in the
normal data analysis. It has to be noted however, that this is a worst case scenario, since
the daily modulation will vary over the course of the year and one can expect the effect to
average out partly.

Figure 4.11 shows the used modulation and the determined values for all fit parameters
over the course of one day. For the given modulation we get a drift modulation with
an amplitude of 10 kHz·2π/86400 s≈ 0.7 Hz/s. For the modulation amplitudes at 2ω
we get peak values of 5.4 mHz for the cos 2ω-amplitude (2Cν0) and -0.38 mHz for the
sin 2ω-amplitude (2Bν0) corresponding to a fractional beat modulation of ±1.9 · 10−17,
respectively ±1.4 · 10−18.

A phase shift in the assumed daily modulation will just shift the phase of the modula-
tion of the fitted parameters accordingly. However, the influence on the final result, the
RMS-parameter and the SME-parameters, might change strongly. Therefor we continue
with the analysis and deduce the systematic shift of the final values by simulating mea-
surement data with the shown behaviour over the course of a whole year. Since our data
doesn’t cover the whole year we only produce simulated data points at times where we
have as well real data points. This simulated data is processed via a single step fit routine
directly fitting the time variations predicted by the two test theories.
The effect of the simulated periodic beat frequency variation is summarized in table 4.1 for
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Figure 4.11.: Estimation of the influence of a typical daily beat frequency modulation
(top row) on the modulation amplitudes.

different cases. For all cases we assumed the modulation of the 2B and 2C coefficients to
be

2B(t)ν0 = −0.38 × 10−3 Hz · sin ωt

2C(t)ν0 = 5.5 × 10−3 Hz · sin ωt,

The calculation has been performed for a periodic modulation at a solar period (ω = ωsolar),
as should be the case for this type of systematic effect, and for a periodic modulation at
the sidereal frequency (ω = ω⊕). This has been done since the two frequencies are almost
identical and the systematic modulation might not exactly occur at a solar period. A sys-
tematic sidereal modulation however will have a stronger impact on the final results, as can
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parameter sin ωsolart cos ωsolart sin ω⊕t cos ω⊕t

(κ̃e−)ZZ (2.5 ± 0.6) (49 ± 1) (−4.9 ± 0.5) (−6.0 ± 0.5)
(κ̃e−)XY (0.35 ± 0.24) (0.44 ± 0.32) (−1.7 ± 0.2) (−0.9 ± 0.2)
(κ̃e−)XZ (−2.9 ± 0.4) (3.2 ± 0.5) (11.3 ± 0.3) (−182.3 ± 0.3)
(κ̃e−)Y Z (−2.0 ± 0.3) (−50 ± 1) (−179 ± 0) (−11.8 ± 0.3)

(κ̃e−)XX − (κ̃e−)Y Y (−1.8 ± 0.5) (−13 ± 1) (2.1 ± 0.5) (1.8 ± 0.5)
β⊕(κ̃o+)XY (−180 ± 4) (12 ± 1) (0.8 ± 0.3) (−0.2 ± 0.4)
β⊕(κ̃o+)XZ (6.6 ± 0.2) (−3.6 ± 0.3) (−0.2 ± 0.2) (2.4 ± 0.2)
β⊕(κ̃o+)Y Z (−8.9 ± 0.2) (−24 ± 0) (3.6 ± 0.2) (−0.7 ± 0.2)

(β − δ − 1/2) (3.9 ± 0.2) (3.2 ± 0.2) (0.7 ± 0.2) (11.0 ± 0.2)

Table 4.1.: SME and RMS model parameters for the case of a pure sinusoidal beat
frequency modulation. (κ̃)-values are in 10−19, the RMS-parameter β −
δ − 1/2 in 10−13.

be seen from the values shown in table 4.1.

The values show that in worst case a shift in the parameter values as big as 1.8·10−17 might
occur for the (κ̃)-matrices, while the shift for the RMS-parameter is in worst case 1 ·10−12.
These are values on the order of the expected sensitivity of the apparatus. However this
resembles a worst case scenario and one might use half of the maximum value as additional
systematic error bar for the determined coefficients.

Alternatively one may try to remove the influence of the longterm drift of the beat fre-
quency on the determined modulation amplitudes at the frequency ωrot of active rotation
and its second harmonic 2ωrot. Therefore in a first step all raw datasets have been smoothed
using a lowpass filter. Then the resulting dataset is split into single rotations, as is done
with the original dataset, and the model

ν(t) = νoff +a·t+2Cν0 cos 2ωrott+2Bν0 sin 2ωrott+Dν0 cos ωrott+Eν0 sin ωrott (4.17)

is fitted to the respective time series yielding the modulation amplitudes at ωrot and 2ωrot.
These amplitudes are now only due to the longterm drift of the frequency, and not connected
to the modulation due to the active rotation. Therefore they may be subtracted from the
modulation amplitudes obtained from the original dataset and the modified dataset may be
used for further evaluation of the data.

85



4. Sources of Systematic Effects

type sensitivity of typ. modulation syst. effect syst. effect @2ωrot

beat frequency ampl./instab. rel. to ν0

@ωrot @2ωrot @ωrot @2ωrot

resonator tilt 120 mHz/µrad 0.2 µrad 0.2 µrad 24 mHz 24 mHz 8.5 · 10−17

(y-axis)
30 mHz/µrad 0.2 µrad 0.2 µrad 6 mHz 6 mHz 2 · 10−17

(x-axis)
after decorr. ≈ 3.6 mHz ≈ 3.6 mHz 1.3 · 10−17

centrifugal forces ≈ 0.2 Hz/10% 8 · 10−6 1.5 · 10−5 ≈ 0.2 mHz ≈ 0.3 mHz ≈ 1 · 10−18

rot. vel. change
power variations 0.17 Hz/mV ≤ 30µV ≤ 30µV ≤ 5 mHz ≤ 5 mHz ≤ 1.8 · 10−17

0.05 Hz/mV ≤ 20µV ≤ 20µV ≤ 1 mHz ≤ 1 mHz ≤ 0.4 · 10−17

0.15 Hz/mV ≤ 2µV ≤ 2µV ≤ 0.3 mHz ≤ 0.3 mHz ≤ 0.1 · 10−17

observed effect
(mean of 1.35 · 105 0.55 Hz ≤ (10 ± 2) mHz (3.6 ± 0.7) · 10−17

rotations)

Table 4.2.: Overview over the size of different systematic influences perturbing the
measurement of the beat frequency during a single rotation. The influ-
ence of tilt variations is decorrelated from the data during the analysis.
An unidentified systematic effect is observed leading to an offset in the
amplitudes 2Bν0 at 2ωrot of ≈ (10 ± 2) mHz (statistical error).

4.5. Summary

Different systematic influences disturbing the measurement of the beat frequency have been
discussed in the preceding sections. Here a short summary of the overall influence on the
measurement is given. Table 4.2 lists the typical magnitude of the different effects on a
timescale of one rotation. The main systematic influence is the variation of the breadboard
tilt. It is decorrelated from the data using the sensitivity coefficients determined before every
measurement run, but due to the uncertainty of the determined sensitivities a residual
systematic error on the order 15% of the original value remains. The systematic effect
averages out when many runs are included in the analysis.
Contrary is the situation for effects due to power fluctuations and the centrifugal forces.
These average out quickly over the course of several rotations.
Additionally to these effects occuring on the timescale of rotation, a daily varying frequency
drift may lead to an effect on some coefficients of the SME and on the RMS parameter,
which are determined via sidereal modulation amplitudes. The effect of this on our data
will be discussed in chapter 5.
Unfortunately, the systematic errors listed above do not account for all systematics observed
in our measurements. The determined modulation amplitudes at the frequency ωrot show
a significant offset of 0.5 Hz, respectively -0.2 Hz. The origin of this systematic shift could
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4.5. Summary

not be identified yet, but a thermal origin is suspected. The modulation amplitudes at 2ωrot

however are only slightly affected by this systematic effect. The amplitudes 2Cν0 show no
significant offset from zero, the amplitudes 2Bν0 show a small offset of 10 mHz.
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5. Analysis and Results

5.1. Measurements

During the course of this work the experimental setup has been modified several times to
improve the stability of the system and to reduce systematic effects. First work on the setup
had started in November 2004, when nothing but the bare resonators and a first vacuum
chamber were present in the laboratory. In the early stage of the experiment (before may
2007) we utilized a ball bearing rotation table, which was taken from the cryogenic setup
of [20]. However, this was still in use in the cryogenic setup till late in 2005 and only
then it could be implemented in our setup. Starting from the middle of 2006, when all
servo systems necessary to suppress systematic effects were present, we performed first test
measurements with the rotating setup. Till march 2007 we characterized the setup and
took first data, which could be analyzed according to the SME and the RMS test theory.
These first results and characterization measurements have been published in [68].

Generally for all our measurements the frequency difference between the two resonators
is sampled with a gating time of 1 s using a frequency counter. At the same time several
other data such as the rotation angle of the table, tilts of the setup and powers trans-
mitted through the cavities, are recorded and stored in one file together with the beat
frequency. In total, three computers control the apparatus and acquire the data, which
is partly communicated between the computers via the local TCP/IP network. To ensure
identical timestamps for the datapoints all these computers are synchronized to the time
server provided by the university.
For the first measurements described above the whole setup was rotated with a period of
240 s. At this period a compromise between a short duration of a single rotation and a low
vibration level of the ball bearing rotation table was found. In the time between October
2006 and December 2006 we have taken approximately 3000 rotations in five measurement
sets. The data was analyzed according to equation 2.19. For every rotation the systematic
influence induced by a varying tilt was subtracted according to the sensitivity determined
before the measurement. Then for every rotation the function

∆ν(θ(t)) = νoff +a·t+2Bν0 sin 2θ(t)+2Cν0 cos 2θ(t)+Dν0 sin θ(t)+Eν0 cos θ(t) (5.1)

was least-squares-fitted to the measured data yielding the desired modulation amplitudes
2Bν0 and 2Cν0 at 2ωrot. The histograms corresponding to the datasets are shown in figure
5.1. For both amplitudes the histograms exhibit a width of ≈ 2 Hz corresponding to a
fractional 1σ uncertainty of 7 ·10−15, which represents approximately the level of sensitivity
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Figure 5.1.: Histograms of the modulations amplitudes 2Bν0 and 2Cν0 for first mea-
surements performed during autumn 2006.

to an isotropy violation for a single rotation measurement.
From the described dataset we could derive a value for the SME coefficient (κ̃e−)ZZ under
the assumption that all other coefficients vanish. For this case the determined value is

(κ̃e−)ZZ = (−1.0 ± 2.3) · 10−15, (5.2)

giving an upper limit (1σ) for the magnitude of (κ̃e−)ZZ of

|(κ̃e−)ZZ| ≤ 3.3 · 10−15. (5.3)

This value was already significantly better than previous results obtained in our group with
a cryogenic setup.

5.1.1. Reconstruction

In April 2007 our new air bearing rotation table was delivered. During a phase of approx-
imately half a year the setup was disassembled, the rotation table was set up, and then
the whole setup was assembled again. To control the motion of the rotation table new
software had to be written. In late 2007 we could start with measurements again, which
were already better than with the old table. In spring 2008 we could slightly improve the
quality of the data. Since then we took data of almost constant quality, which will be
presented in the next sections. Only for the period may/june 2008 no data is available,
since during this time the setup was equipped with an active stabilization system for the
tilt of the rotation table baseplate as described in chapter 3.6.1. From the beginning of
march 2008 till April 2009 we continuously collected data. For the determination of the
coefficients describing a possible Lorentz Invariance violation, we can use 46 datasets longer
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Figure 5.2.: Left: Raw frequency data of a measurement run of 14 days performed
during the Christmas break 2008 from December 19th, 2008 till January
2nd, 2009. The measurement run includes ≈12 000 rotations. At the
time t = 0 the apparatus was closed after having been open for several
days. Thus the temperature rises at the beginning leading to big drifts.
Right: small fraction of the data together with the fitted modulations.

than 24 hours. The raw data of one of the measurement runs is shown in figure 5.2 (left
side) containing approximately 12000 rotations. The right side of the figure shows a small
part of the data together with modulations fitted to the data.

5.2. Fit Procedures

The analysis of the data has been performed in a series of several steps. From step to
step we derive one after each other the Fourier-amplitudes at the different frequency scales
expected according to the models of the two test theories as described in chapter 2.
In the first step of the analysis we determine for every single rotation the amplitudes of
the frequency modulation at twice the frequency ωrot of the active rotation of the setup.
As has been mentioned in chapter 4, the most severe systematic effect of known origin is
expected to stem from modulations of the resonator tilt upon rotation of the setup. To
be able to compensate for the effect of a varying tilt the sensitivity of the beat frequency
to tilts of the setup has been determined before every measurement run in an automated
way. This sensitivity coefficient is now used to decorrelate the tilt effect from the frequency
data before we derive the modulation amplitudes from the frequency data. Therefore the
tilt data is weighted with the corresponding sensitivity coefficient and is directly subtracted
from the frequency data. Then for every single rotation i of the rotation table we perform
a least squares fit of the equation

ν(θ) = νoff + a · θ + 2Bν0 sin 2θ + 2Cν0 cos 2θ + Dν0 sin θ + Eν0 cos θ (5.4)

to the beat frequency data, yielding a series of drift and modulation amplitudes
{a, B, C, D, E}i.
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Figure 5.3.: Time series of the determined modulation amplitudes 2Bν0 and 2Cν0 of
the beat frequency upon active rotation of the setup. The series contains
approximately 135,000 rotations. v.e. = vernal equinox

Here the angle θ is the angle of resonator 1 with respect to the laboratory x-direction
pointing in southern direction as defined in section 2.3.1. During this fitting step rotations
which are clearly disturbed (e.g. jumps in tilt or similar), or where the error of the fit is
too large, are omitted. To every set of these amplitudes we attribute a timestamp, which
is the time in SI seconds passed since the y-axis of the laboratory system and the Y-axis of
the SCCEF (compare section 2.3.1) were coaligned on the day of the vernal equinox in the
year 20001. In this way we derive for each single data file the two time series 2B(t) and
2C(t) as described in chapter 2.3.2, respectively 2.3.3.

Figure 5.3 shows the two time series of the amplitudes 2Biν0 and 2Ciν0 of all the used
rotations contained in the 46 datasets after decorrelation of the tilt, while figure 5.4 shows
the corresponding histograms together with the fit of a Gaussian distribution to the de-
termined bin values. For the amplitudes 2Biν0 the standard deviation is approximately
σ = 0.42 Hz (→ full width at half maximum ≈ 1.2 Hz), while for the amplitudes 2Ciν0 the
values are σ = 0.34 Hz (≈ 1 Hz). The center values for the fitted Gaussian distributions are
2B̄ν0 = (0.01±0.001) Hz, respectively 2C̄ν0 = (0.001±0.001) Hz, indicating a significant
systematic effect present on the 2B-amplitudes.
To be able to assess the effect of the decorrelation of the tilt induced systematic effects,

we determine as well the modulation amplitudes for the original dataset. Thus the analysis
following this first step can as well be performed for the original dataset without decorrela-
tion of the tilt. For the undecorrelated data the histograms yield an almost identical width,
but the center values are shifted. For the 2Bν0-amplitudes the mean of the undecorrelated
data is (−0.0036 ± 0.001) Hz, while for the amplitudes 2Cν0 it is (0.0031 ± 0.001) Hz.

1the vernal equinox occured on march, 20th, 07:36 UTC

92



5.2. Fit Procedures

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
0

1000

2000

3000

4000

5000

6000

7000

amplitude 2BΝ0 HHzL

c
o
u
n
ts

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
0

2000

4000

6000

8000

amplitude 2CΝ0 HHzL

c
o
u
n
ts

Figure 5.4.: Histograms of the amplitudes 2Bν0 and 2Cν0. The width of the his-
tograms is 0.84 Hz, respectively 0.7 Hz (1σ). The center values are 10
mHz and 1 mHz.

As has been shown in chapter 4.4, the potential effect of longterm drifts on the determined
amplitudes could, in a worst case scenario, be on the order of a few mHz (≈ 2 · 10−17

relative to ν0). Thus in a second step the data of each data file is analyzed with respect to
the influence of these longterm drifts of the frequency on the modulation amplitudes. To
derive the actual influence of the drifts we have to filter the data using a lowpass filter. We
use a moving average filter extending over 6 rotations (≈ 540 datapoints). This length of
the filter is sufficient to completely supress the modulations on the timescale of a rotation
and properly reproduces the behaviour of the longterm drifts (compare fig. 5.5). The
obtained datasets can now be analyzed as has been done with the original ones yielding
modulation amplitudes being determined by the varying drift of the beat frequency only.
To determine the influence of the drifts on our final values we may subtract in a further
step these amplitudes from the original ones and compare the final outcome of the further
analysis.

The next step of the analysis consists in the determination of the modulations on the
timescale of a sidereal day. According to the two test theories in case of an anisotropic
speed of light modulations are expected to occur at a period of half a sidereal day and at a
period of a sidereal day. As has been shown in chapter 2.3.2, the Standard Model Extension
predicts a behaviour described by the equations

B(t) = B0(t) + B1(t) sin ω⊕T⊕ + B2(t) cos ω⊕T⊕

+B3(t) sin 2ω⊕T⊕ + B4(t) cos 2ω⊕T⊕

C(t) = C0(t) + C1(t) sin ω⊕T⊕ + C2(t) cos ω⊕T⊕

+C3(t) sin 2ω⊕T⊕ + C4(t) cos 2ω⊕T⊕. (5.5)
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Figure 5.5.: Effect of the low-pass filter on the raw data (left) and the fitted ampli-
tudes at 2ωrot (right). Dashed: original amplitudes, solid: amplitudes of
the low-pass filtered data. The rotation period is 90 s. Modulations on
the timescale of a rotation are averaged out.

The Robertson-Mansouri-Sexl test theory on the other hand models a possible deviation
from an isotropic expansion of light via

2B(t) = (1/2 − β + δ)(v2
solar/c

2
0)(γ3(t) cos ω⊕T⊕ + γ4(t) cos 2ω⊕T⊕

+σ3(t) sin ω⊕T⊕ + σ4(t) sin 2ω⊕T⊕)

(5.6)

2C(t) = (1/2 − β + δ)(v2
solar/c

2
0)(γ0(t) + γ1(t) cos ω⊕T⊕ + γ2(t) cos 2ω⊕T⊕

+σ1(t) sin ω⊕T⊕ + σ2(t) sin 2ω⊕T⊕).

At this stage of the evaluation process both models are in principle identical, except the fact,
that in the RMS model no constant offset is expected for the amplitudes 2Bν0. However,
such an offset is present in the data. To account for this fact we introduce an additional
term bsyst into the fit function for the amplitudes 2Bν0 to model this systematic offset.
Doing so, at this stage of the evaluation the only difference between the two models is the
multiplication with a constant factor.

Figures 5.6 and 5.7 show for all the 46 datasets the fitted amplitudes B0, ..., C4 of the
SME model with their statistical errors as time series. As can be seen from the statistics
of the single series’ (compare table 5.1) they are influenced by small systematic effects.
This influence is strongest for the amplitudes B0 and C0, which are determined via offsets
in the series of the active rotation amplitudes. For all the series’ the standard deviation
of the series is about a factor of two bigger than the average statistical error of the single
datapoints.
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coefficient weighted mean mean of stat. errors σ̄i st. dev. of series σseries

B0 (18.1 ± 2.0) · 10−18 1.6 · 10−17 4.2 · 10−17

B1 (3.4 ± 2.8) · 10−18 2.2 · 10−17 5.2 · 10−17

B2 (3.0 ± 2.8) · 10−18 2.2 · 10−17 4.5 · 10−17

B3 (−5.0 ± 2.8) · 10−18 2.2 · 10−17 5.5 · 10−17

B4 (−2.8 ± 2.8) · 10−18 2.2 · 10−17 4.4 · 10−17

C0 (2.2 ± 1.6) · 10−18 1.3 · 10−17 3.5 · 10−17

C1 (1.6 ± 2.3) · 10−18 1.8 · 10−17 3.2 · 10−17

C2 (3.1 ± 2.3) · 10−18 1.8 · 10−17 3.3 · 10−17

C3 (2.1 ± 2.3) · 10−18 1.8 · 10−17 3.9 · 10−17

C4 (−0.3 ± 2.3) · 10−18 1.8 · 10−17 2.8 · 10−17

Table 5.1.: Statistics of the time series’ of the modulation amplitudes Bi, Ci for the
46 datasets used for evaluation after decorrelation of the tilt.

5.3. Analysis in the Robertson-Mansouri-Sexl-Framework

As has already been mentioned above the time series for the sidereal modulations are
eventually the same for the RMS and the SME theory. A multiplication of the amplitudes
B0, ..., C4 of the SME with the factor

(
1

2
· (v2

solar/c
2
0))

−1 ≈ 1.3 · 106

would directly yield the different sidereal amplitudes γ0, ..., σ4 of the RMS model, where the
RMS parameter (β − δ − 1/2) has been immersed into the amplitudes. However, instead
of the possibility of this multiplication we directly fitted the amplitudes.

The difference between the two test theories lies in the specific time dependence of the
sidereal day coefficients, which vary over the course of a sidereal year. Within the RMS
theory they depend on the laboratories velocity with respect to the Cosmic Microwave
Background (CMB) and the orientation of the laboratory, respectively the orientation of
the direction of light propagation with respect to this velocity vector. Just a single coeffi-
cient (β − δ − 1/2) describes a possible anisotropy of the speed of light within this model
and determines, together with some geometrical factors as given in appendix B, the time
dependence.
To determine the anisotropy coefficient of the RMS-theory we therefore simultaneously fit
the given time dependence to all the time series’ γi, σi. This fit yields for the data with the
tilt being decorrelated

(β − δ − 1/2) = (−1.6 ± 6.0) · 10−12. (5.7)

To check which influence the inclusion of the systematic offset bsyst into the fitting proce-
dure has on the final result we repeat the fits without this offset. However, this fit yields
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almost exactly the same value.
To estimate the systematic error associated with the measurement is difficult, since the
parameter is determined via a combination of an offset of 2Cν0 and via different Fourier
amplitudes at sidereal frequencies. The sensitivity coefficients used for the decorrelation
of residual tilt modulations exhibit fluctuations of ≈ 15%. Thus the decorrelation may
introduce a systematic shift of the frequency modulation amplitudes proportional to the
amplitudes of the residual tilt modulations, which are rather constant in amplitude. How-
ever, the shift differs for different datasets and can be assumed to average out partially for
our long time series inversely proportional to the square root of the number of different
measurement runs. We estimate the residual effect to be on the order of ±1.3·10−17 for the
amplitudes of one dataset, which averages down to 1.9 · 10−18 for the systematic error on
the mean amplitude 2C̄ if one uses all our measurement runs. If the RMS parameter would
be determined only via this offset, as described by the coefficient γ0, then the systematic
error would be given by the systematic error of the offset divided by γ0 ·(v2

solar/c
2
0), resulting

in an error of 4.9 · 10−12. However, the RMS parameter is not determined by this offset
alone, but as well via eight amplitudes of different sidereal modulations. Thus the influence
of the offset shift is strongly reduced.
Alternatively one may compare the given value of (β− δ−1/2) to the result obtained from
an analysis of the dataset without decorrelation of the tilt and the dataset where addition-
ally the drift has been subtracted. Conservatively we add a fraction of these differences
and a fraction of the offset error obtaining an overall estimate for the systematic error of
1.2 · 10−12.
Thus our final result for the Lorentz violation parameter (β − δ − 1/2) of the Robertson-
Mansouri-Sexl test theory is

(β − δ − 1/2) = (−1.6 ± 6.0 ± 1.2) · 10−12. (5.8)

This corresponds to an upper limit (1σ) of

|β − δ − 1/2|1σ ≤ | − 1.6 −
√

6.02 + 1.22| · 10−12 = 7.7 · 10−12. (5.9)

Within the RMS framework this result yields an upper limit for a possible isotropy violation
1
2
|∆c(π/2)/c|1σ = 1

2
v2

solar/c
2
0 · (β − δ − 1/2) (vsolar being the velocity of the solar system

versus the cosmic microwave background, 370 km/s) of

1
2
|∆c(π/2)/c|1σ ≤ 6 · 10−18, (5.10)

which is more than one order of magnitude tighter than previous results of our group [20]
and other groups [21, 37].
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coefficient value (in 10−17) upper limit (2σ, in 10−17)

(κ̃e−)ZZ 1.6 ± 2.4 ± 1.1 ± 12 ≤ 26.2
(κ̃e−)XY 0.0 ± 1.0 ± 0.3 ≤ 2.1
(κ̃e−)XZ 0.4 ± 1.5 ± 0.1 ≤ 3.4
(κ̃e−)Y Z −0.6 ± 1.4 ± 0.5 ≤ 3.6

(κ̃e−)XX − (κ̃e−)Y Y 0.8 ± 2.0 ± 0.3 ≤ 4.8
β⊕(κ̃o+)XY 1.5 ± 1.5 ± 0.2 ≤ 4.5
β⊕(κ̃o+)XZ −0.1 ± 1.0 ± 0.2 ≤ 2.1
β⊕(κ̃o+)Y Z −0.1 ± 1.0 ± 0.4 ≤ 2.3

Table 5.2.: Values for the different SME coefficients as derived from the shown time
series. An upper 2σ-limit for the magnitude of the coefficients using the
total uncertainty is given in the right column.

5.4. Analysis in the Standard Model Extension Frame

Since our data extends over more than one year we are able to determine all of the 8
coefficients of the photonic sector of the SME, which are in principle accessible with cavity-
based experiments. For the determination of values for the κ̃-matrices we make several
assumptions/simplifications, namely:

• The values of the components of the matrices (κ̃o−) and (κ̃e+), which describe a
birefringence of the vacuum, are well below the sensitivity of our current setup, so that
they can be treated as being zero. This is supported by astrophysical observations.

• We treat our vacuum (p ≈ 1 · 10−7 mbar) as being almost perfect and set ǫ = 1.

With these justified simplifications the connection between the modulation of the beat
frequency, as given by the timeseries 2B(ti) and 2C(ti), and the components of the (κ̃)-
matrices is given by equation 5.5 with the Fourier amplitudes B0, .., C4 being modulated
at an annual2 frequency as given in appendix C. All of these functions for the different
time series contain different combinations of the components of the (κ̃o+) matrix and a
component of the (κ̃e−) matrix. Thus, similar to the RMS case, we have to simultaneously
fit the model to the ten time series of the modulation amplitudes at sidereal frequencies,
yielding the coefficients of interest as displayed in table 5.2.

All the coefficients are determined on the order of 1 ·10−17. The statistical errors (first error
bar in table 5.2) of the fitted values are in a range of 1 · 10−17 for the β⊕(κ̃o+)-coefficients
and (κ̃e−)XY to 2.4 · 10−17 for the coefficient (κ̃e−)ZZ , which is as well most seriously

2The period of the modulation is the sidereal year!

97



5. Analysis and Results

coefficient κ̃ZZ
e− κ̃XX−Y Y

e− κ̃XY
e− κ̃XZ

e− κ̃Y Z
e− κ̃XY

o+ κ̃XZ
o+ κ̃Y Z

o+

κ̃ZZ
e− 1

κ̃XX−Y Y
e− -0.019 1
κ̃XY

e− -0.020 0.000 1
κ̃XZ

e− 0.010 0.018 -0.009 1
κ̃Y Z

e− 0.003 0.001 0.008 0.039 1
β⊕κ̃XY

o+ 0.043 0.018 -0.035 0.306 0.129 1
β⊕κ̃XZ

o+ 0.036 0.121 -0.295 0.049 -0.023 0.123 1
β⊕κ̃Y Z

o+ -0.080 0.295 0.122 0.040 0.013 0.009 -0.001 1

Table 5.3.: Correlation matrix for the fit of the SME coefficients to the complete
dataset. As can be seen from the values correlations of up to 30% exist
between several of the coefficients. For brevity of display the coefficient
combination (κ̃e−)XX − (κ̃e−)Y Y has been abbreviated as (κ̃e−)XX−Y Y .
Correlations above 10% have been highlighted.

affected by systematical errors. A comparison of the determined values to the total uncer-
tainties shows, that all the coefficients are compatible with zero within the 1σ uncertainty
margins. A look into table 5.3 listing the correlations between the fitted coefficients shows,
that for some coefficients correlations on a level of up to 30% exist (highlighted in the table).

The systematic errors on the values can be estimated using the sizes of the different effects
listed in table 4.2. The biggest influence is to be expected for (κ̃e−)ZZ , which is dominated
by an offset in the amplitudes Ci, since it appears in the Fourier component C0 and is not
determined via an annual/sidereal modulation. Thus errors upon decorrelation of the tilt
directly lead to a systematic error, which averages out only if one includes many different
datasets in the evaluation. The contribution can be estimated as the effect for one dataset
divided by the square root of the total number of different measurement runs. The esti-
mated effect on 2C as derived earlier is 1.3·10−17 for a single dataset. With 46 independent
measurement runs this averages down to a level of 1.9 · 10−18 yielding a systematic error
on (κ̃e−)ZZ ≈ 8C0/(3sin2χ) due to the tilt decorrelation of ≈ ±6.7 · 10−18.
As in the case of the analysis in the RMS framework one may compare the obtained values
to the results of an evaluation of the data without having the tilt decorrelated and of the
data after subtraction of the drift influence. Conservatively we add a part of this difference
to the systematic errors, yielding the second error bar in table 5.2.
As has already been mentioned in chapter 4 one systematic effect exists of which the
source could not be identified so far, but which is probably of thermal origin. The modula-
tion amplitudes at the frequency of the rotation ωrot exhibit an offset of ≈ 0.5 Hz for one
component, respectively ≈ −0.2 Hz for the other (compare chapter 4). Furthermore this
offset shows from time to time variations with a period of ≈ 2 hours.
The modulation amplitudes 2Cν0 at twice the frequency of rotation show no significant
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5.4. Analysis in the Standard Model Extension Frame

offset after decorrelation of the tilt, but the amplitudes 2Bν0 show a small offset of 10
mHz. We can not exclude, that a systematic effect of the same size might be present
on the amplitude 2Cν0 as well, possibly masking a finite value of the coefficient (κ̃e−)ZZ .
Although we do not believe this to be the case, we conservatively add the value this offset
would yield, 1.2 · 10−16, as a systematic error to the error bars of (κ̃e−)ZZ . All other coef-
ficients are determined via combinations of the Fourier amplitudes at a sidereal and annual
frequency and are thus widely insensitive to a possible offset on the modulation amplitudes.
These are susceptible to modulations of these offsets. This is the case for our varying error
due to the tilt decorrelation. However, it is difficult to estimate the systematic effect of
these modulations on the fitted value of the coefficients, since these are primarily affected
in a systematic way for modulations with a stable phase, which is not the case here. Thus,
as already mentioned, we use part of the difference between the values determined with
and without tilt decorrelation as an estimate for the systematic error, yielding the values as
given in table 5.2.
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Figure 5.6.: Overview of the modulation amplitudes Bi, Ci for the undecorrelated
data. The values B0, C0 are offsets of the modulation amplitudes at
twice the active rotation rate, while the others are amplitudes at sidereal
frequencies.
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5.4. Analysis in the Standard Model Extension Frame
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Figure 5.7.: Overview over the different amplitudes Bi and Ci derived from the 46
datasets after decorrelation of the tilt.
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6. Conclusion and Outlook

During this work a highly sensitive apparatus has been developed for an improved test of
the isotropy of space, interpreted in terms of the isotropy of the speed of light. We have
collected data during a period of more than a year, thus allowing the determination of the
eight coefficients of the Standard Model Extension theory as described in chapter 2, and the
determination of the parameter (β − δ − 1/2) of the Robertson-Mansouri-Sexl test theory.
The results of this work are consistent with an isotropic speed of light on a level of a few
parts in 10−17 and no significant indication of a violation of Lorentz invariance has been
found for photons.

The limits which could be set on the parameters of the two test theories are for all coeffi-
cients more stringent than previously reported results by more than one order of magnitude
(see table 6.1 and fig. 6.1). This improvement has been achieved by the use of a monolithic
high finesse ULE resonator structure, which allows for common mode rejection and reduces
drift effects as compared to resonators made from fused silica. Furthermore the narrow line
width as compared to previously used sapphire resonators allows more precise locking of
the laser to the resonance frequency of the cavity, while the amount of frequency noise is
reduced further by the use of an active vibration isolation.
Another reason for the improvement is the large amount of data comprising ≈ 135000
rotations which could be used for the analysis.

The sensitivity of the experiment is limited by the small residual systematic effects oc-
curing at twice the frequency of rotation. Estimating the potential limit via the single
rotation sensitivity, which is approximately 0.4 Hz (width of the histograms of 2Bν0, 2Cν0,
would yield a potential limit of 0.2 Hz/ν0

√
135000 ≈ 2 · 10−18 for the amplitudes C0, B0,

corresponding to a potential limit for (κ̃e−)ZZ of 1.4 · 10−17.

Thus, it is evident that for a further improvement of the experiment it is first of all oblig-
atory to find the source of the very small residual systematic effect, which could not be
found so far. Furthermore, the experiment should be moved to a location with a better
stability of the environmental conditions, as e.g. would be the case in the basement of the
university. As test measurements showed, a room in the basement would provide a very
stable environment concerning tilt variations as the tilt of the floor varies by few µrad only
over the course of several days. This would allow to remove the active stabilization system
for the baseplate tilt, which due to its finite stiffness causes the constant residual tilt modu-
lation of ≈ 0.2µrad. In connection with a tilt sensor with higher resolution this might allow
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6. Conclusion and Outlook

parameter This work Herrmann et al. [21] Stanwix et al. [37] Müller et al. [74]

(κ̃e−)ZZ 1.6 ± 12.3 −194 ± 518 143 ± 179 2230 ± 2900
(κ̃e−)XX − (κ̃e−)Y Y 0.8 ± 2.0 54 ± 48 −5 ± 47 −120 ± 160

(κ̃e−)XY 0 ± 1.1 −31 ± 25 29 ± 23 77 ± 40
(κ̃e−)XZ 0.4 ± 1.5 57 ± 49 −69 ± 22 −103 ± 39
(κ̃e−)Y Z −0.6 ± 1.5 −15 ± 44 21 ± 21 9 ± 42
(κ̃o+)XY 1.5 ± 1.5 −25 ± 51 −9 ± 26 17 ± 20
(κ̃o+)XZ −0.1 ± 1.0 −36 ± 27 −44 ± 25 −31 ± 23
(κ̃o+)Y Z −0.1 ± 1.1 29 ± 28 −32 ± 23 −28 ± 22

(β − δ − 1/2) −1.6 ± 6.1 −210 ± 190 −94 ± 81 not given

Table 6.1.: Comparison of the values determined within this work with values pub-
lished by other groups. The components of the (κ̃e−) matrix are in 10−17,
of the (κ̃o+) matrix in 10−13. The RMS parameter is given in 10−12.

to control the tilt even more precise than is possible at the moment. Together with the use
of resonator geometries, which are by construction/design less susceptible to tilt variations
and exhibit smaller tilt sensitivities this would allow to significantly reduce the systematic
errors due to tilt modulations, respectively due to not precisely known sensitivities.

Another advantage of the transfer of the experiment to the basement is the increased
temperature stability of the room. The test measurements showed, that almost no daily
modulation of the ambient temperature exists for rooms deep enough in the basement.
Thus, the realization of an extremely high temperature stability for the complete setup
would be simplified quite a lot as compared to the present laboratory, which is influenced
by the periodic irradiation by sunlight and the change of the ambient temperature.
The higher stability of the temperature of the experiment will as well allow for a stronger
suppression of the drifts of the beat frequency, which on this level may already lead to
serious systematic effects. For this purpose a new vacuum chamber has already been con-
structed, which allows for better control of the resonator temperature and should allow to
strongly reduce residual drifts. Another advantageous feature of the new vacuum chamber
is the possibility to use both of our resonator blocks for our measurements. So far only one
block has been used. Thus, the amount of data could be increased by a factor of two.

However, for a strong improvement of the current values it would be as well necessary
to considerably reduce the frequency noise. One possible measure is to implement vibration
insensitive mounts for the resonators, which have already been described in literature (e.g.
[73]). Ideally these would lead to smaller tilt sensitivities of the resonance frequencies as
well. FEM simulations aiming in this direction are performed and should allow finding the
optimum support system and suitable resonator geometries. Since our experiment is already
equipped with an active vibration isolation system though, these measures alone will not
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Figure 6.1.: Improvement on the upper limit for a possible anisotropy of the speed of
light over the course of time as derived from the RMS parameter.

improve the frequency stability too much.
For a considerable reduction of frequency noise it is necessary to reduce the amount of
thermal noise of the resonators, which means the construction of new resonators. The
thermal noise can be reduced in two possible ways. One solution is to increase the spot
size of the laser beams on the cavity mirrors. This means the use of longer resonator struc-
tures, which are in turn potentially more sensitive to tilt variations and vibrations. However,
as mentioned above the use of FEM simulations might provide geometries with reduced
sensitivities to tilts and vibrations. The other option is to return to cryogenic resonator
structures, which inherently exhibit a lower thermal noise than resonators at room temper-
ature. However, for this option to be realized it would be necessary to develop a cryogenic
setup which is free of technical noise disturbing the measurement process.
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A. Description of Frequency Stability

In the presented thesis a measure for the frequency stabiliy of oscillators in the time domain
is used, the Allan deviation (or root Allan variance, RAV). A short introduction to measures
of frequency stability, their definitions and connections to measures in the frequency domain
will be given. For a detailled decsription of the subjet consult [75] or [76].
One wants to measure the frequency of the output of a frequency source (e.g. a quartz
oscillator or the output signal of an optical clock), which can be described by

V (t) = [V0 + ǫ(t)] · sin (2πν0t + φ(t)) , (A.1)

where V0 is the nominal peak output voltage, ǫ(t) is the amplitude deviation, ν0 is the
nominal frequency of the source and φ(t) is the phase deviation. The frequency of V (t) is
measured as a function of time, i.e. one has a time series of frequency data yi, where every
point has been taken with a gating time of τ0 and a zero dead time between adjacent mea-
surements is assumed. From this frequency measurement one wants to deduce information
about the stability of the nominal frequency ν0 of the oscillator. The fractional frequency
deviation y(t) is given by

y(t) =
ν(t) − ν0

ν0
=

1

2πν0

dφ

dt
. (A.2)

The instability of most frequency sources can be modeled by a combination of different
noise types (see A.1) having spectral densities of a power law form Sy(f) ∝ fα, where f
is the Fourier frequency of the noise component. Therefore one can write

Sy(f) =
α=+2
∑

α=−2

hαfα. (A.3)

Most often one wants to describe the instability not in the frequency domain using the
noise spectral density, but in the time domain.
A first possibility would be just to calculate the classical variance of the dataset. As has
been shown this is not useful [77], since only for the case of white noise (α = 0, uncorrelated
random noise) it is a stable measure. For other noise types it may depend on the length of
the dataset and may be divergent (e.g. for flicker noise, α = −1).
Instead one should use a K-sample variance (K∈ N) as a general measure for the frequency
stability. The most general definition is given by

σ2
y(K, m · τ0) =

1

K − 1

K
∑

k=1

(

ȳk −
1

K

K
∑

j=1

ȳj

)2

, (A.4)
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A. Description of Frequency Stability

noise type α Sy(f) σ2
y(τ)

white phase modulation 2 h2f
2 3fhh2

4π2 · 1
τ2

flicker phase modulation 1 h1f
1.038+3 ln(2πfhτ)

4π2 · 1
τ2

white frequency modulation 0 h0
1
2
h0 · 1

τ

flicker frequency modulation -1 h−1f
−1 2 ln(2)h−1

random walk frequency modulation -2 h−2f
−2 4π2

6
h−2τ

Table A.1.: Different commonly encountered noise types and the connection between
the power law models and the Allan variance. fh is an upper cutoff
frequency given by the bandwidth of the measurement system.

where the ȳk are ȳk = 1
m

∑(k+1)·m−1
l=k·m yl. So the original time series yi is divided into intervals

extending over a time τ = m · τ0 each and for every interval the average value is calculated
yielding the ȳk.
Most commonly used and recommended by IEEE [78] is the so called Allan variance,
which is an averaged 2-sample variance defined by

σ2
y(τ) =

1

2

〈

(∆y)2
〉

, (A.5)

where the brackets denote an infinite time average and the ∆ denotes a first finite difference
of adjacent frequency measurements taken with a sampling time of τ . In practice for a
discrete finite time series yi it can be estimated by

σ2
y(τ0) =

1

2(N − 1)

N−1
∑

i=1

(yi+1 − yi)
2, (A.6)

where τ0 is the sampling time for the frequency measurements. To calculate the dependance
of σ2

y(τ0) on τ one can easily average as many adjacent values yi as desired to get

σ2
y(mτ0) =

1

2m2(L − 1)

L
∑

i=1





(i+2)·m−1
∑

j=(i+1)·m

yj −
(i+1)·m−1
∑

j=i·m

yj





2

, (A.7)

where m is the number of measurements averaged for each new datapoint and L ∈ N is
the biggest number fulfilling (L+1)m < N . This is the original 2-sample variance or Allan
variance. It can be linked to the power law model of the spectral noise density using the
transformation given in [79]:

σ2
y(τ) = 2

∫ ∞

0

Sy(f)
sin4(πτf)

(πτf)2
df. (A.8)
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Clearly this expression is divergent for some of the noise types in A.1.
However it is possible to get more information from the data using a different version of
the Allan-Variance, the so called overlapping Allan variance, which is calculated according
to

σ2
y(τ) =

1

2(N − 2n + 1)

N−2n+1
∑

i=1

1

n
·
(

i+2n−1
∑

j=i+n

yj −
i+2n−1
∑

l=i

yl

)2

. (A.9)

This version increases confidence for the calculated values due to higher numbers of data-
points for averaging, and it allows the overlapping Allan variance to be calculated for longer
averaging times τ than is possible for the ordinary Allan variance.
Another measure for the frequency stability (or instability) of a frequency source is the so
called Hadamard variance, a 3-sample variance defined by

Hσ2
y(τ0) =

1

6(N − 1)

N−2
∑

k=1

(yk+2 − 2yk+1 + yk)
2. (A.10)

In the same way as for the Allan variance one can derive an equation to calculate the
overlapping Hadamard variance for integration times τ = m · τ0

Hσ2
y(mτ0) =

1

6m2(N − 3m + 1)

N−3m+1
∑

j=1

(

j+m−1
∑

i=j

[yi+2m − 2yi+m + yi]

)2

(A.11)

One advantage of the Hadamard variance is the fact, that linear frequency drift does not
affect the calculated value. Furthermore the Hadamard variance is still convergent for some
noise types, for which the Allan variance is divergent.
Of course a lot of other measures for frequency stability exist with special fields of applica-
tions. For an overview see e.g. [80]
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B. Full Expressions of the RMS Theory

For our analysis we neglected terms arising due to the modulation of the laboratories ve-
locity relative to the cosmic microwave background. This is justifiable, since these terms
are suppressed strongly in comparison to the terms containing only the velocity vsolar of
the solar system relative to the CMB1. For completeness we derive in the following the
full expressions for the modulation of the velocity by the orbital motion. However, we still
neglect the modulation of the velocity due to the rotation of the earth and just consider
the changing orientation of the resonators due to the rotation. The nomenclature is the
same as in 2.3.3.

The velocities contributing to the velocity of the laboratory versus the cosmic microwave
background (CMB) are the speed of the solar system versus the CMB [31]

~vsolar = vsolar ·





cos Φ cos Θ
sin Φ cos Θ
− sin Θ



 , (B.1)

where the right ascension Φ and the declination Θ specify the direction within the sun
centered equatorial frame, and the velocity of the earth (orbital motion), which is given by

~vorb = vorb ·





sin ΩT
− cos ΩT cos η
− cos ΩT sin η



 (B.2)

within the SCCEF. The orientation of the two resonators in the laboratory frame is given
by

ê1,lab(t) =





cos ωrott
sin ωrott

0



 , ê2,lab(t) =





sin ωrott
− cos ωrott

0



 . (B.3)

Then in the SCCEF the orientation of the resonators is given by

ê1(t) =





cos χ cos ω⊕T⊕ cos ωrott − sin ω⊕T⊕ sin ωrott
cos χ sin ω⊕T⊕ cos ωrott + cos ω⊕T⊕ sin ωrott

− sin χ cos ωrott



 (B.4)

1The biggest term arising is a mixed term containing vsolar · vorb = 0.08 · v2
solar
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B. Full Expressions of the RMS Theory

and

ê2(t) =





cos χ cos ω⊕T⊕ sin ωrott + sin ω⊕T⊕ cos ωrott
cos χ sin ω⊕T⊕ sin ωrott − cos ω⊕T⊕ cos ωrott

− sin χ sin ωrott



 . (B.5)

The relative shift of the resonance frequency is given by

∆ν1 − ∆ν2

ν0
= −(β − δ − 1/2)

v2

c2
[sin2 θ1(t) − sin2 θ2(t)] (B.6)

= −(β − δ − 1/2) · [|~v × ê1|2 − |~v × ê2|2]/c2

Evaluation of this formula yields several terms which can be arranged according to

∆(ν1 − ν2)

ν
= 2B(t) sin 2θ(t) + 2C(t) cos 2θ(t)

with

2B(t) = (1/2 − β + δ)(v2
solar/c

2
0)(γ3 cos ω⊕T⊕ + γ4 cos 2ω⊕T⊕ + σ3 sin ω⊕T⊕

+σ4 sin 2ω⊕T⊕)

2C(t) = (1/2 − β + δ)(v2
solar/c

2
0)(γ0 + γ1 cos ω⊕T⊕ + γ2 cos 2ω⊕T⊕

+σ1 sin ω⊕T⊕ + σ2 sin 2ω⊕T⊕).

Then the γi and σi coefficients are given by

γ0 =
1

4
sin2 χ(3 cos 2Θ − 1) +

vorb

vsolar
· (cos Φ cos Θ sin2 χ sin ΩT −

[2 sin Θ sin η + cos Θ cos η sin Φ] sin2 χ cos ΩT )

γ1 = −1

2
cos Φ sin 2Θ sin 2χ +

vorb

vsolar
· (− sin 2χ cosΦ cos Θ sin η cos ΩT

− sin 2χ sin Θ sinΩT ) + O(
v2

orb

v2
solar

)

VI



γ2 = −1

2
cos 2Φ cos2 Θ(1 + cos2 χ) − vorb

vsolar
· (1 + cos2 χ) · [cos Θ cos η sin Φ cos ΩT

+ cos Φ cos Θ sin ΩT ] + O(
v2

orb

v2
solar

)

γ3 = − sin Φ sin χ sin 2Θ +
vorb

vsolar

· (2 cos η cos ΩT sin Θ sin χ

−2 cos Θ cos ΩT sin Φ sin χ sin η) + O(
v2

orb

v2
solar

)

γ4 = − sin 2Φ cos χ cos2 Θ +
vorb

vsolar
· (2 cos Φ cos Θ cos χ cos η cos ΩT

−2 cos Θ cos χ sin Φ sin ΩT ) + O(
v2

orb

v2
solar

)

σ1 = −1

2
sin Φ sin 2χ sin 2Θ +

vorb

vsolar
· (sin 2χ cos η sin Θ cos ΩT

− sin 2χ cos Θ sin Φ sin η cos ΩT ) + O(
v2

orb

v2
solar

)

σ2 = −1

2
· (1 + cos2 χ) sin 2Φ cos2 Θ +

vorb

vsolar
(1 + cos2 χ) · (cos Φ cos η cos Θ cosΩT

− cos Θ sin Φ sin ΩT )

σ3 = cos Φ sin 2Θ sinχ +
vorb

vsolar

· (2 cosΦ cos Θ sin η sin χ cos ΩT

+2 sin Θ sinχ sin ΩT ) + O(
v2

orb

v2
solar

)

σ4 = cos 2Φ cos2 Θ cosχ +
vorb

vsolar
· (2 cosΘ cos η cos χ sin Φ cos ΩT

+2 cosΦ cos Θ cosχ sin ΩT ) + O(
v2

orb

v2
solar

)
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C. SME Coefficients and Laboratory Frame

Coefficients

As has been mentioned in chapter 2, we assume that the matrices (κ̃o−) and (κ̃e+) describing
a possible birefringence of the vacuum are negligible compared to the sensitivity of our
apparatus, which is supported by astrophysical observations. Thus they are considered to
be zero. Furthermore we set ǫ = 1, since we are working with vacuum conditions. Then the
connection between the parameters of the SME and the modulation amplitudes measured
in the laboratory is to first order in orbital boosts given by [50]

B0 = −1

2
βL sin χ(κ̃o+)XY (C.1)

B1 =
1

2
sin χ(κ̃e−)XZ +

1

2
β⊕ sin χ

[

sin Ω⊕T (κ̃o+)XY (C.2)

− sin η cos Ω⊕T (κ̃o+)Y Z
]

−1

2
βL cos χ(κ̃o+)XZ

B2 = −1

2
sin χ(κ̃e−)Y Z − 1

2
β⊕ sin χ

[

− cos η cos Ω⊕T (κ̃o+)XY (C.3)

+ sin η cos Ω⊕T (κ̃o+)XZ
]

+
1

2
βL cos χ(κ̃o+)Y Z

B3 = −1

4
cos χ

[

(κ̃e−)XX − (κ̃e−)Y Y
]

−1

2
β⊕ cos χ

[

sin Ω⊕T (κ̃o+)Y Z (C.4)

− cos η cos Ω⊕T (κ̃o+)XZ
]

B4 =
1

2
cos χ(κ̃e−)XY − 1

2
β⊕ cos χ

[

sin Ω⊕T (κ̃o+)XZ (C.5)

+ cos η cos Ω⊕T (κ̃o+)Y Z
]
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C0 =
3

8
sin2 χ(κ̃e−)ZZ − 1

4
β⊕ sin2 χ

[

sin Ω⊕T (κ̃o+)Y Z (C.6)

+ cos η cos Ω⊕T (κ̃o+)XZ + 2 sin η cos Ω⊕T (κ̃o+)XY
]

C1 = −1

2
sin χ cos χ(κ̃e−)Y Z +

1

2
β⊕ sin χ cos χ

[

cos η cos Ω⊕T (κ̃o+)XY (C.7)

− sin η cos Ω⊕T (κ̃o+)XZ
]

+
1

2
cos(κ̃o+)Y Z

C2 = −1

2
sin χ cos χ(κ̃e−)XZ − 1

2
β⊕ sin χ cos χ

[

sin Ω⊕T (κ̃o+)XY

− sin η cos Ω⊕T (κ̃o+)Y Z
]

+
1

2
(κ̃o+)XZ

C3 =
1

4

(

1 + cos2 χ
)

(κ̃e−)XY − 1

4
β⊕

(

1 + cos2 χ
)

[

sin Ω⊕T (κ̃o+)XZ (C.8)

+ cos η cos Ω⊕T (κ̃o+)Y Z
]

C4 =
1

8

(

1 + cos2 χ
)

[

(κ̃e−)XX − (κ̃e−)Y Y
]

(C.9)

+
1

4
β⊕

(

1 + cos2 χ
)

[

sin Ω⊕T (κ̃o+)Y Z − cos η cos Ω⊕T (κ̃o+)XZ
]

.

Here we neglected terms of first order in the velocity of the laboratory βL, since these
are strongly suppressed (factor 15) compared to the terms of first order in β⊕.
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